Inference in First-Order Logic

e Proofs

e Unification

e Generalized modus ponens

e Forward and backward chaining
e Completeness

e Resolution

e Logic programming

CS 561, Session 16-18

Inference in First-Order Logic

e Proofs — extend propositional logic inference to deal with quantifiers

e Unification

e Generalized modus ponens

e Forward and backward chaining — inference rules and reasoning
program

e Completeness — Gddel's theorem: for FOL, any sentence entailed by
another set of sentences can be proved from that set

e Resolution — inference procedure that is complete for any set of
sentences

e Logic programming

CS 561, Session 16-18 2

Remember:
propositional
logic

¢{> Modus Ponens or Implication-Elimination: (From an implication and the
premise of the implication, you can infer the conclusion.)

o = 3, (8%
/‘3
¢ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)
AN & AN AN

Xy

¢ And-Introduction: (From a list of sentences, you can infer their conjunction.)
Ny, o, ..., (¥
SN S AN AN ¢ O
¢ Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

o
apVar V... Vo,
¢ Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

v

¢ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)

a Vv ,3, -3

/

¥
¢ Resolution: (This is the most difficult. Because /7 cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently,
implication is transitive.)
aV 3, =3V - = [, 7 =~

or equivalentl
a V7 4 Y o = Y

Proofs

Sound inference: find «v such that KB = o
Proof process is a search, operators are inference rules.

E.g.. Modus Ponens (MP)

a, o= 3 At(Joe,UCB) At(Joe,UCB) = OK(Joe)
i OK(Joe)

E.g., And-Introduction (Al)
a 3 OK(Joe) CSMajor(Joe)
a3 OK(Joe) NCSMajor(.Joe)
E.g., Universal Elimination (UE)

Vo a Vo At(x,UCB) = OK(x)
a{x/T} At(Pat,UCB) = OK(Pat)

7 must be a ground term (i.e., no variables)

CS 561, Session 16-18

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

e Universal Elimination (UE):
for any sentence a, variable x and ground term T,
[IX o
a{x/t}

e Existential Elimination (EE):
for any sentence a, variable x and constant symbol k not in KB,
(X O
a{x/k}

e Existential Introduction (El):
for any sentence a, variable x not in a and ground term g in q,
o}
(X a{g/x}

CS 561, Session 16-18

Proofs

The three new inference rules for FOL (compared to propositional logic) are:

e Universal Elimination (UE):
for any sentence a, variable x and ground term T,
X a e.g., from [x Likes(x, Candy) and {x/Joe}
a{x/t} we can infer Likes(Joe, Candy)

e Existential Elimination (EE):
for any sentence a, variable x and constant symbol k not in KB,
(X « e.g., from X Kill(x, Victim) we can infer
a{x/k} Kill(Murderer, Victim), if Murderer new symbol

e Existential Introduction (El):
for any sentence a, variable x not in a and ground term g in q,
o e.g., from Likes(Joe, Candy) we can infer
(X af{g/x} [X Likes(x, Candy)

CS 561, Session 16-18 6

Example Proof

Bob is a buffalo 1. Buffalo(Bob)
Pat is a pig 2. Pig(Pat)
Buffaloes outrun pigs |3. Va,y Buffalo(x) A Pig(y) = Faster(z,y)

Bob outruns Pat

CS 561, Session 16-18 7

Example Proof

All & 2 4. Buf falo(Bob) A Pig(Pat)

CS 561, Session 16-18

Example Proof

UE 3, {z/Bob,y/Pat}|5. Buffalo(Bob) A Pig(Pat) = Faster(Bob, Pat)

CS 561, Session 16-18 9

Example Proof

MP 6 & 7

6. Faster(Bob, Pat)

CS 561, Session 16-18

10

Search with primitive example rules

Operators are inference rules
States are sets of sentences
Goal test checks state to see if it contains query sentence

123

Al, UE, MP is a common inference pattern
Al 182

1234 .
Problem: branching factor huge, esp. for UE
1[UE 3 {x/Bob, ylPat}

12345

g

|dea: find a substitution that makes the rule
| MP5&6 premise match some known facts
12345(6) = a single, more powerful inference rule

CS 561, Session 16-18 11

Unification

A substitution ¢ unifies atomic sentences p and ¢ if po = qo

p q g

Knows(John,z) | Knows(John, Jane)
Knows(John,x)| Knows(y, O.J)
Knows(John,z)| Knows(y, Mother(y)

CS 561, Session 16-18

Unification

{x/Jane}
{x/John,y/OJ}
{y/John,x/Mother(John)}

E.g., if we know ¢ and Knows(John,z) = Likes(John,x)
then we conclude Likes(John, Jane)
Likes(John,O.])
Likes(John, Mother(John))

Idea: Unify rule premises with known facts, apply unifier to conclusion

CS 561, Session 16-18 13

Generalized Modus Ponens (GMP)

plra p?"a R p-'tf'.l (pl ApE ZANRIN /'\-p“ - Q)
o

Eg. p/= Faster(Bob,Pat)
po' = Faster(Pat,Steve)
prAps = q = Faster(x,y) A Faster(y,z) = Faster(x, z)
o= {x/Bob,y/Pat, z/Steve}
go = Faster(Bob, Steve)

where p;'o = p;o for all

GMP used with KB of definite clauses (ezactly one positive literal):

either a single atomic sentence or
(conjunction of atomic sentences) = (atomic sentence)

All variables assumed universally quantified

CS 561, Session 16-18 14

Soundness of GMP

Need to show that

!

pls o iy (A ADL=q) Eqo
provided that p,//o =p,o for all 7
Lemma: For any definite clause p, we have p = po by UE
L. (mA-- Apn=q¢ EMmAN...Ap,=qo=(poA...Ap,0 = qo)
2.pls o m EpIAL AR EploA.. . Ap)o

3. From 1 and 2, go follows by simple MP

CS 561, Session 16-18 15

Properties of GMP

e Why is GMP and efficient inference rule?
- It takes bigger steps, combining several small inferences into one

- It takes sensible steps: uses eliminations that are guaranteed
to help (rather than random UES)

- It uses a precompilation step which converts the KB to canonical
form (Horn sentences)

Remember: sentence in Horn from is a conjunction of Horn clauses

(clauses with at most one positive literal), e.g.,
A-B) OB CL[H D), thatis(B=A) U((CUD) = B)

CS 561, Session 16-18 16

Horn form

e We convert sentences to Horn form as they are entered into the KB
e Using Existential Elimination and And Elimination

e e.g., [x Owns(Nono, x) I Missile(x) becomes

Owns(Nono, M)
Missile(M)

(with M a new symbol that was not already in the KB)

CS 561, Session 16-18 17

Forward chaining

When a new fact p is added to the KB
for each rule such that p unifies with a premise
If the other premises are known
then add the conclusion to the KB and continue chaining

Forward chaining is data-driven
e.g., inferring properties and categories from percepts

CS 561, Session 16-18 18

Forward chaining example

Add facts 1, 2, 3, 4, 5, 7 in turn.
Number in [| = unification literal; ,/ indicates rule firing

1. Buf falo(z) N Pig(y) = Faster(z,vy)
. Pig(y) A Slug(z) = Faster(y, z)
. Faster(z,y) A Faster(y, z) = Faster(x, z)
. Buf falo(Bob) [1a,x]
. Pig(Pat) [1b,,/] — 6. Faster(Bob, Pat) [3a,x], [3b,x]
[2a, %]

7. Slug(Steve) [2b, /]

—8. Faster(Pat, Steve) [3a,x], [3b, /]

—9. Faster(Bob, Steve) [3a,x], [3b, x]

ol el A

CS 561, Session 16-18 19

Backward chaining

When a query q is asked
if a matching fact ¢’ is known, return the unifier
for each rule whose consequent ¢’ matches ¢
attempt to prove each premise of the rule by backward chaining

(Some added complications in keeping track of the unifiers)
(More complications help to avoid infinite loops)
Two versions: find any solution, find all solutions

Backward chaining is the basis for logic programming, e.g., Prolog

CS 561, Session 16-18 20

Backward chaining example

1. Pig(y) A Slug(z) = Faster(y, z)
2. Slimy(z) A Creeps(z) = Slug(z)
3. Pig(Pat) 4. Slimy(Steve) 5. Creeps(Steve)
Faster(Pat,Steve)
/éQ {y/Pat, z/Steve}
Pig(Pat) Slug(Steve)

@ v /N} {z/Steve}

Slimy (Steve) Creeps(Steve)

® s ®u y

Completeness in FOL

Procedure ¢ i1s complete if and only if
KBF;,a« whenever KB =«

Forward and backward chaining are complete for Horn KBs

but incomplete for general first-order logic

E.g., from

PhD(x) = HighlyQuali fied(x)
-PhD(x) = FarlyEarnings(x)
HighlyQuali fied(x) = Rich(x)
EarlyEarnings(x) = Rich(x)

should be able to infer Rich(Me), but FC/BC won't do it

Does a complete algorithm exist?

22

Historical note

450B.C. Stoics propositional logic, inference (maybe)

322B.C. Aristotle “syllogisms” (inference rules), quantifiers

1505 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)

1879 Frege first-order logic

1922 Wittgenstein proof by truth tables

1930 Godel 4 complete algorithm for FOL

1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Godel -3 complete algorithm for arithmetic

190 Davis/Putnam “practical” algorithm for propositional logic

1905 Robinson “practical” algorithm for FOL—resolution

CS 561, Session 16-18 23

Resolution

Entailment in first-order logic is only semidecidable:

can find a proof of o if 'B = a

cannot always prove that A'B ~ o
Cf. Halting Problem: proof procedure may be about to terminate with
success or failure, or may go on for ever

Resolution is a refutation procedure:
to prove KB |= a, show that KK B A =« is unsatisfiable

Resolution uses K'B, -« in CNF (conjunction of clauses)

Resoclution inference rule combines two clauses to make a new one:

C, C>
7

Inference continues until an empty clause is derived (contradiction)

CS 561, Session 16-18 24

Resolution inference rule

Basic propositional version:

aV 3, -GVy : ~a = 3, 8=9
or equivalently
aVvy o =y

Full first-order version:

V... pj ooV P
G V... q -..Vq,
{Pl Voo piciVpisr PV ar- o Qi1 V Qs ,_,”-.-"'q”]l{:l‘

where pjo = ~qro
For example,

~Rich(x) v Unhappy(x)
Rich(Me)
Unhappy(Me)

with ¢ = {z/Me}

CS 561, Session 16-18

25

Remember: normal forms

Other approaches to inference use syntactic operations on sentences,
often expressed in standardized forms

Conjunctive Normal Form (CNF—universal) “product of sums of

conjunction of disjunctions of literals simple variables or
negated simple variables”

clauses
E.g., (AV-B)A(BV-CV-D)

“sum of products of
simple variables or
negated simple variables”

Disjunctive Normal Form (DNF—universal)
disjunction of conjunctions of literals
terms
Eg, (AAB)V(AA-C)YV(AA-D)V(-BA-C)V (-BA-D)

Horn Form (restricted)
conjunction of Horn clauses (clauses with < 1 positive literal)
Eg, (AV-B)A(BV-CV-D)
Often written as set of implications:
B=> Aand{(CAD) = B

Conjunctive normal form

Literal = (possibly negated) atomic sentence, e.g., “Rich(Me)
Clause = disjunction of literals, e.g., ~Rich(Me) V Unhappy(Me)
The KB is a conjunction of clauses

Any FOL KB can be converted to CNF as follows:

Replace P = @ by ~PV(Q

Move — inwards, e.g., -Va P becomes dx —P

Standardize variables apart, e.g., Vo PV Jdx () becomes Yax PV dy ()
Move quantifiers left in order, e.g., Vo PV dx () becomes Vady PV Q)
Eliminate 3 by Skolemization (next slide)

Drop universal quantifiers

Distribute A over V, e.g., (PAQ)V R becomes (PVQ)A(PV R)

NogkwnNH=

CS 561, Session 16-18 27

Skolemization

Jx Rich(xz) becomes Rich(G1) where G1 is a new “Skolem constant”

1k %(k”) = k¥ becomes %(e”) —=eY

More tricky when 3 is inside V

E.g.. "Everyone has a heart”
Vo Person(x) = dy Heart(y) N Has(x,y)

Incorrect:
Va Person(x) = Heart(H1) AN Has(x, H1)

Correct:
Vo Person(x) = Heart(H(x)) A Has(x, H(x))
where H is a new symbol (“Skolem function™)

Skolem function arguments: all enclosing universally quantified variables

CS 561, Session 16-18 28

Resolution proof

To prove n:
— negate it
— convert to CNF

— add to CNF KB
— infer contradiction

E.g., to prove Rich(me), add —Rich(me) to the CNF KB

-~ PhD(z)V HighlyQuali fied(x)
PhD(zx)V EarlyEarnings(z)
~HighlyQualified(z) V Rich(x)
-~ FarlyEarnings(x) V Rich(x)

CS 561, Session 16-18

29

Resolution proof

=1 PhD(x) v HQ(x) =VHQ(x) V Rich(x)

~u_—

=1 PhD(x) V Rich(x) PhD(x) v ES(x)

~u_—

Rich(x) v ES(x)

—1ES(x) Vv Rich(x)

T~

Rich(x) =1 Rich(Me)

W

CS 561, Session 16-18 30

