Administrativia

e Assignment 1 due thursday 9/25/2003 BEFORE midnight

e Midterm exam 10/09/2003 in class

CS 460, Sessions 8-9

Last time: search strategies

Uninformed: Use only information available in the problem formulation

Breadth-first
Uniform-cost
Depth-first
Depth-limited
Iterative deepening

Informed: Use heuristics to guide the search

Best first:

Greedy search — queue first nodes that maximize heuristic “desirability” based on
estimated path cost from current node to goal,

A* search — queue first nodes that maximize sum of path cost so far and estimated
path cost to goal.

Iterative improvement — keep no memory of path; work on a single current state and
iteratively improve its “value.”

Hill climbing — select as new current state the successor state which maximizes value.

Simulated annealing — refinement on hill climbing by which “bad moves” are
permitted, but with decreasing size and frequency. Will find global extremum.

CS 460, Sessions 8-9 2

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, A.

Which node (use the node’s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

h=10 h=12 h=8 h=10

CS 460, Sessions 8-9 3

Depth-first search

Node queue: initialization
state depth path cost parent
1 A 0 0 --

CS 460, Sessions 8-9

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent
2 B 1 3 1
3 C 1 19 1
4 D 1 5 1

CS 460, Sessions 8-9

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
3 C 1 19 1
4 D 1 5 1

CS 460, Sessions 8-9

Depth-first search

Node queue: add successors to queue front; empty queue from top

state depth path cost parent
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
3 C 1 19 1
4 D 1 5 1

CS 460, Sessions 8-9

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, A.

Which node (use the node’s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

h=10 h=12 h=8 h=10

CS 460, Sessions 8-9 8

Breadth-first search

Node queue: initialization

state depth path cost parent

1 A 0 0 --

CS 460, Sessions 8-9

Breadth-first search

Node queue: add successors to queue end; empty queue from top
state depth path cost parent

2 B 1 3 1

3 C 1 19 1

4 D 1 5 1

CS 460, Sessions 8-9

10

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent
3 C 1 19 1
4 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2

CS 460, Sessions 8-9

Breadth-first search

Node queue: add successors to queue end; empty queue from top

state depth path cost parent
3 C 1 19 1
4 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2

CS 460, Sessions 8-9

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, A.

Which node (use the node’s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

h=10 h=12 h=8 h=10

CS 460, Sessions 8-9 13

Uniform-cost search

Node queue: initialization

state depth path cost

parent #

1 A 0

CS 460, Sessions 8-9

14

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted
by path cost so far; empty queue from top

state depth path cost parent
2 B 1 3 1
3 D 1 5 1
4 C 1 19 1

CS 460, Sessions 8-9 15

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted
by path cost so far; empty queue from top

state depth path cost parent
3 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
4 C 1 19 1

CS 460, Sessions 8-9 16

Uniform-cost search

Node queue: add successors to queue so that entire queue is sorted
by path cost so far; empty queue from top

state depth path cost parent
3 D 1 5 1
5 E 2 7 2
6 F 2 8 2
7 G 2 8 2
8 H 2 9 2
4 C 1 19 1

CS 460, Sessions 8-9 17

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, A.

Which node (use the node’s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

h=10 h=12 h=8 h=10

CS 460, Sessions 8-9 18

Greedy search

Node queue: initialization

state depth path cost total parent#
cost to goal cost

1 A 0 0 20 20 --

CS 460, Sessions 8-9

19

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.
state depth path cost total parent#
cost to goal cost
2 B 1 3 14 17 1
3 D 1 5 15 20 1
4 C 1 19 18 37 1
Sort key

CS 460, Sessions 8-9

20

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

state depth path cost total parent#
cost to goal cost

3) G 2 38 8 16 2
7 E 2 7 10 17 2
6 H 2 9 10 19 2
8 F 2 38 12 20 2
3 D 1 3) 15 20 1
4 C 1 19 18 37 1

CS 460, Sessions 8-9

Greedy search

Node queue: Add successors to queue, sorted by cost to goal.

state depth path cost total parent#
cost to goal cost

3) G 2 8 8 16 2
7 E 2 7 10 17 2
6 H 2 9 10 19 2
8 F 2 38 12 20 2
3 D 1 3) 15 20 1
4 C 1 19 18 37 1

CS 460, Sessions 8-9

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, A.

Which node (use the node’s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

h=10 h=12 h=8 h=10

CS 460, Sessions 8-9 23

A* search

Node queue: initialization

state depth path cost total parent#
cost to goal cost

1 A 0 0 20 20 --

CS 460, Sessions 8-9

24

A* search

Node queue: Add successors to queue, sorted by total cost.

state depth path cost total parent#
cost to goal cost

2 B 1 3 14 17 1

3 D 1 5 15 20 1

4 C 1 19 18 37 1
Sort key

CS 460, Sessions 8-9

A* search

Node queue: Add successors to queue front, sorted by total cost.

state depth path cost total parent#
cost to goal cost

3) G 2 38 8 16 2
6 E 2 7 10 17 2
7 H 2 9 10 19 2
3 D 1 5 15 20 1
8 F 2 8 12 20 2
4 C 1 19 18 37 1

CS 460, Sessions 8-9

A* search

Node queue: Add successors to queue front, sorted by total cost.

state depth path cost total parent#
cost to goal cost

3) G 2 8 8 16 2
6 E 2 7 10 17 2
7 H 2 9 10 19 2
3 D 1 5 15 20 1
8 F 2 8 12 20 2
4 C 1 19 18 37 1

CS 460, Sessions 8-9

Exercise: Search Algorithms

The following figure shows a portion of a partially expanded search tree.
Each arc between nodes is labeled with the cost of the corresponding
operator, and the leaves are labeled with the value of the heuristic
function, A.

Which node (use the node’s letter) will be expanded next by each of the
following search algorithms?

(a) Depth-first search
(b) Breadth-first search
(c) Uniform-cost search
(d) Greedy search

(e) A* search

h=10 h=12 h=8 h=10

CS 460, Sessions 8-9 28

Last time: Simulated annealing algorithm

e lIdea: Escape local extrema by allowing “bad moves,” but gradually
decrease their size and frequency.

function SIMULATED- ANNEALING(problem. schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current. a node

next, a node
T, a “temperature” controlling the probabilitv of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t+— 1 to ~c do
T+ schedulelt]
if T=0 then return current
next<+—a randomly selected successor of current Note: goa| here iIs to
A E « VALUE[nert] = VALUE[current] .
if AE > 0 then current +— next maximize E

else current<— next only with probability AE/T

CS 460, Sessions 8-9 29

Last time: Simulated annealing algorithm

e lIdea: Escape local extrema by allowing “bad moves,” but gradually
decrease their size and frequency.

function SIMULATED- ANNEALING(problem. schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current. a node

next, a node
T, a “temperature” controlling the probabilitv of downward steps

current < MAKE-NODE(INITIAL-STATE[problem])
for t+— 1 to ~c do
T+ schedulelt]
if T=0 then return current
next<+—a randomly selected successor of current A|gor|thm when goa|
A E « VALUE[nert] = VALUE[current] : T
if AF<<0 then current — next IS to minimize E.
else current<— next only with probability gAl) T

CS 460, Sessions 8-9 30

This time: Outline

e Game playing

The minimax algorithm
Resource limitations
alpha-beta pruning
Elements of chance

CS 460, Sessions 8-9

31

What kind of games?

e Abstraction: To describe a game we must capture
every relevant aspect of the game. Such as:
e Chess
e Tic-tac-toe

e Accessible environments: Such games are
characterized by perfect information

e Search: game-playing then consists of a search through
possible game positions

e Unpredictable opponent: introduces uncertainty
thus game-playing must deal with contingency

problems
CS 460, Sessions 8-9 32

Searching for the next move

e Complexity: many games have a huge search space

e Chess: b =35 m=100 = nodes = 35100
If each node takes about 1 ns to explore
then each move will take about Z0 °? millennia
to calculate.

e Resource (e.g., time, memory) limit: optimal
solution not feasible/possible, thus must approximate

1. makes the search more efficient by discarding
portions of the search tree that cannot improve quality
result.

2. heuristics to evaluate utility of
a state without exhaustive search.

CS 460, Sessions 8-9 33

Two-player games
e A game formulated as a search problem:

e [nitial state: ?

e QOperators: ?

e Terminal state: ?
Utility function: ?

CS 460, Sessions 8-9

Two-player games

e A game formulated as a search problem:

e Initial state: board position and turn
e Operators: definition of legal moves
e Terminal state: conditions for when game is over

Utility function: a numeric value that describes the outcome of the
game. E.g., -1, 0, 1 for loss, draw, win.
(AKA payoff function)

CS 460, Sessions 8-9 35

Game vs. search problem

“Unpredictable” opponent = solution 1s a contingency plan
Time limits = unlikely to find goal, must approximate

Plan of attack:

e algorithm for perfect play (Von Neumann, 1944)

e finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950;
Samuel, 1952-57)

e pruning to reduce costs (McCarthy, 1956)

CS 460, Sessions 8-9 36

Example: Tic-Tac-Toe

MAX (X)

MIN (O)

MAX (X}

MIN (Q)

TERMINAL

Liility

. _-_-‘_-‘_‘_“"‘—\—-
X X X '
{ X X X
! X
—‘__h_h-‘-—_-—-___""‘-—-_
X0 X O X
0
i
-_-_‘_-"‘“--__
\H‘_“:-_\-:n:_ﬁ_-"—-__
L . . S T —
X0 X0 X0
N X X
T T T
%0 x|o|x| [x|olx
0 0[0fx X
0 x| x[o] [x0l0
-1 0 +1

CS 460, Sessions 8-9

37

Type of games

perfect information

imperfect information

deterministic chance

chess, checkers, backgammon
go, othello monopoly

bridge, poker, scrabble
nuclear war

CS 460, Sessions 8-9

38

b Tl I]

Type of games S e e

The board set for play

25 24 23 22 21 20 19

Red to play
determinidjc chance
perfect information chess, checkers, backgammon
go, othello monopoly
imperfect information bridge, poker, scrabble

nuclear war

White:

10

CS 460, Sessions 8-9

18 17 16 15 14 13

The minimax algorithm

e Perfect play for deterministic environments with perfect
Information

e Basic idea: choose move with highest minimax value

= best achievable payoff against best play

e Algorithm:

1.
2.
3.

4.

Generate game tree completely
Determine utility of each terminal state

Propagate the utility values upward in the three by applying
MIN and MAX operators on the nodes in the current level

At the root node use minimax decision to select the move with
the max (of the min) utility value

e Steps 2 and 3 in the algorithm assume that the

opponent will play perfectly.

40

Generate Game Tree

CS 460, Sessions 8-9

41

Generate Game Tree

// T

CS 460, Sessions 8-9

42

Generate Game Tree

CS 460, Sessions 8-9

43

Generate Game Tree

1 ply

CS 460, Sessions 8-9

a4

A subtree

X

0 |X

45

x| x| 0o

x| x| 0o

o< —0o|°[*®

= x| x| o

> o

x| x| o x| x| 0o

—

ol @ X o|°| %@
x|x|o//ZTo <o =
ol o x
> x| x| 0

OOO‘\
XXO\X x
olo x| x| o
< X/XXO|VOOX®

ol|© <| ol x

x| ol X
XMO <Ixlo X|x|o
° /voo|v000.
x| = =

<= x| x| x

x|x|o x|x|o

—

ol© ol°[* @

x|x|lo x|x|o

What is a good move?

X0 |X X0 | X X|0O |X X0 |X

X O(X X1 O[X O] OfX O |X

(0) (0) {OX (0) X\OO
l l

X0 |X X0 X

X O(X . O] O|X

Ol XI10 Xl X10

draw

46

Minimax

N

PAAVINAN

8246

Minimize opponent’s chance
eMaximize your chance

CS 460, Sessions 8-9

47

Minimax

/!\

// L /N /\\

8246

Minimize opponent’s chance
eMaximize your chance

CS 460, Sessions 8-9

48

Minimax

MAX /T\
7V AN

Minimize opponent’s chance
eMaximize your chance

CS 460, Sessions 8-9

49

Minimax

MAX /T\
7V AN

Minimize opponent’s chance
eMaximize your chance

CS 460, Sessions 8-9

50

minimax = maximum of the minimum

MAX

MIN

CS 460, Sessions 8-9 51

Minimax: Recursive implementation

function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do

VALUE[op] ¢+ MINIMAX-VALUE{APPLY{ 0p, game), game)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE(state, game) returns a utility value

if TERMINAL- TEST[game|(state) then

return UTILITY[game](state)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCcEssonrs(state)

Complete: ? Time complexity: ?
Optimal: ? Space complexity: ?

CS 460, Sessions 8-9 52

Minimax: Recursive implementation

function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do

VALUE[op] ¢+ MINIMAX-VALUE{APPLY{ 0p, game), game)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE(state, game) returns a utility value

if TERMINAL- TEST[game|(state) then

return UTILITY[game](state)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCcEssonrs(state)

Complete: Yes, for finite state-space Time complexity: O(b™)
Optimal: Yes Space complexity: O(bm) (= DFS
Does not keep all nodes in memory.)

CS 460, Sessions 8-9 53

Do We Have To Do All That Work?

MAX e

MIN // \

3 12 8

CS 460, Sessions 8-9

54

Do We Have To Do All That Work?

3

MAX e

3

MIN // \

3 12 8

CS 460, Sessions 8-9

55

Do We Have To Do All That Work?

3
MAX e
2

3

“ A\

3 12 2

Since 2 Is smaller than 3, then there is no need for
further search

CS 460, Sessions 8-9

56

Do We Have To Do All That Work?

MAX P

S ASAN

More on this next time: a-p pruning

CS 460, Sessions 8-9

57

1. Move evaluation without complete search

e Complete search is too complex and impractical

e Evaluation function: evaluates value of state using
and cuts off search

e New MINIMAX:

e CUTOFF-TEST: cutoff test to replace the termination condition
(e.g., deadline, depth-limit, etc.)

e EVAL: evaluation function to replace utility function (e.g.,
number of chess pieces taken)

CS 460, Sessions 8-9

58

Evaluation functions

g
] ! z(2 i
 §
IIIEI.I.
= r
w & fam
g2l@ [@lz2@ QG
2 2¥ 9
Black to move White to move
White slightly better Black winning

e Weighted linear evaluation function: to combine 7 heuristics

= wifi+Wofar .+ Wafn

E.g, w’s could be the values of pieces (1 for prawn, 3 for bishop etc.)
f's could be the number of type of pieces on the board

CS 460, Sessions 8-9

59

Note: exact values do not matter

MAX
MIN ‘x 1& 20
1 4 1 0 2 400

Behaviour is preserved under any monotonic transformation of EVAL

Only the order matters:
payoff in deterministic games acts as an ordinal utility function

CS 460, Sessions 8-9 60

Minimax with cutoff: viable algorithm?

MINIMAXCUTOFF i1s identical to MINIMAXVALUE except
1. TERMINAL? is replaced by CUTOFF?
2. UtiLITY is replaced by EvAL

Does it work in practice?

| Assume we have
=10 =35 = m=4 100 seconds,

evaluate 104
nodes/s: can

6
4-ply ~ human novice evilllua/te 10
8-ply = typical PC, human master NOBES/MOVE

4-ply lookahead is a hopeless chess player!

12-ply =~ Deep Blue, Kasparov

CS 460, Sessions 8-9 61

2. a-fpruning: search cutoff

e Pruning: eliminating a branch of the search tree from
consideration without exhaustive examination of each
node

e o-fpruning: the basic idea is to prune portions of the
search tree that cannot improve the utility value of the
max or min node, by just considering the values of
nodes seen so far.

e Does it work? Yes, in roughly cuts the branching factor
from b to \b resulting in double as far look-ahead than
pure minimax

CS 460, Sessions 8-9 62

a-fBpruning: example

MAX

MIN 6

CS 460, Sessions 8-9

63

a-fBpruning: example

> 6

MAX

MIN 6 <2
X X

CS 460, Sessions 8-9

64

a-fBpruning: example

MAX

MIN

CS 460, Sessions 8-9 65

a-fBpruning: example

MAX
Selected move

MIN 6

CS 460, Sessions 8-9 66

a-fBpruning: general principle

Player

Opponent
If > v then MAX will chose m so
prune tree under n
Similar for g for MIN

Player

Opponent V

CS 460, Sessions 8-9 67

Properties of a-f

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(b"/?)
= doubles depth of search
= can easily reach depth 8 and play good chess

A simple example of the value of reasoning about which computations
are relevant (a form of metareasoning)

CS 460, Sessions 8-9 68

The a-palgorithm:
Basically MINIMAX + keep track of n, 5 + prune

function MAX-VALUE(state, game, v, 3) returns the minimax value of state
inputs: state, current state in game
game, game description
v, the best score for MAX along the path to state
3, the best score for MIN along the path to state

if CUTOFF-TEST(state) then return EvaL(state)
for each s in SUCCESSORS(state) do
a4+ Max(a, MIN-VALUE(s, game, av, 3])
if o« > / then return 5
end
return o

function MIN-VALUE(state, garne, «v,/3) returns the minimax value of state

if CUTOFF-TEST(state) then return EVAL(stafe)
for each s in SUCCESSORS(state) do
34 MIN(3. MAX-VALUE(s, game, o, /3])
if 5 € a then return a
end
return J

More on the o~ algorithm

e Same basic idea as minimax, but prune (cut away)
branches of the tree that we know will not contain the
solution.

CS 460, Sessions 8-9

70

More on the o~ algorithm: start from Minimax

Basically MINIMAX ——keep-track—of—ar—_E——prune—

function MaX-VALUE(state, game, a,/3) returns the minimax value of state
inputs: state. current state in game
gaine, game description

N T . =

et et e—
if CUTOFF-TEST(state) then return EvaL(stafe)
for each s in SUCCESSORS(state) do

v +— Max{a, MIN-VALUE(s, game, «v, 3))

end
return o

function MIN-VALUE(state, game, o, 3) returns the minimax value of state

if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do
3 MIN(3. MAX-VALUE(s, game, cc, /3))

end
return -5

Remember: Minimax: Recursive implementation

function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do

VALUE[op] ¢+ MINIMAX-VALUE{APPLY{ 0p, game), game)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE(state, game) returns a utility value

if TERMINAL- TEST[game|(state) then

return UTILITY[game](state)
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)
else

return the lowest MINIMAX-VALUE of SUCcEssonrs(state)

Complete: Yes, for finite state-space Time complexity: O(b™)
Optimal: Yes Space complexity: O(bm) (= DFS
Does not keep all nodes in memory.)

CS 460, Sessions 8-9 72

More on the o~ algorithm

e Same basic idea as minimax, but prune (cut away)
branches of the tree that we know will not contain the
solution.

e Because minimax is depth-first, let’'s consider nodes
along a given path in the tree. Then, as we go along this
path, we keep track of:

e « . Best choice so far for MAX
e [: Best choice so far for MIN

CS 460, Sessions 8-9 73

More on the o~ algorithm: start from Minimax

Basically MINIMAX + keep track of n, 3 + prune

inputs: state, current state in game
game, game description

av, the best score for MAX along the path to state
3, the best score for amIN along the path to state

if CUTOFF-TEST(state) then return EvaL(stafe)
for each s in SUCCESSORS(state) do
v +— Max{a, MIN-VALUE(s, game, «v, 3))
ifa > J then return
end
return o

function MAX-VALUE(state, game, o, /3) returns the minimax value of state

Note: These are both
Local variables. At the
Start of the algorithm,

We Initialize them to
a=-coand f=+o

if CUTOFF-TEST(state) then return EVAL(state)
for each s in SUCCESSORS(state) do
3 MIN(3. MAX-VALUE(s, game, cc, /3))
if 5 < «a then return o
end
return /J

function MIN-VALUE(state, game, o, 3) returns the minimax value of state

More on the a-Balgorithm In Min-Value:

for cach s 1 SvccEssoRrs ! state) do
5 MIN(5. MAX-VALUE' 8. garte. o, 3))
if 7 < o theo return o

end

return 7

MAX

Max-Value loops
MIN over these

Min-Value loops

over these ‘

MAX

B=5 B=5 =5 .

More on the a-Balgorithm In Max-Value:

for each s in SUCCESS0RS | stafe) do
a e Max(o, Min-VavLvr(s game, «, 3])
if o = 5 then return

end

return o

MAX o
p=+eo

Q
I
Ul

Max-Value loops B
MIN | over these

+ 00

MAX

B=5 B=5 =5 »

More on the a-Balgorithm In Min-Value:

for cach s 1 SvccEssoRrs ! state) do
5 MIN(5. MAX-VALUE' 8. garte. o, 3))
if 7 < o theo return o

end
return 7

MAX

MIN

Min-Value loops

over these ‘

MAX
8 I

End loop and return 5
77

o N

b
ol
b
o
b
o
™ R

More on the a-Balgorithm In Max-Value:

for each s in SUCCESS0RS | stafe) do
a e Max(o, Min-VavLvr(s game, «, 3])
if o = 5 then return

end

return o

MAX o
p=+eo

Q
I
Ul

Max-Value loops B
MIN | over these

+ 00

MAX

8 I

End loop and return 5
78

2

5
2

b
ol
b
o
b
o
™ R

Another way to understand the algorithm

e From:
http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/alpha-beta.html

e For a given node N,

o IS the value of N to MAX
B is the value of N to MIN

CS 460, Sessions 8-9 79

Example
B~ ~ Q
| J H | Z
D 3 N oS V. /1 /4
JoobodO oD OO0 oo hoop
EFHILMOPTU WX Z22/73 /5 /76

10 11 9 1214151314 15 2 4 1 3 22 24 25
MiniMax
+

1 ARE MAX NODES
© ARE MIN NODES Alpha-Beta

a-falgorithm:

Basically MINIMAX + keep track of n, 3 + prune

function MAX-VALUE(state, game, o, /3) returns the minimax value of state
inputs: state. current state in game
gaine, game description
ar, the best score for MAX along the path to sfate
3, the best score for MIN along the path to stafe

if CUTOFF-TEST(state) then return EvaL(state)
for each s in SUCCESSORS(state) do
v +— Max{a, MIN-VALUE(s, game, «v, 3))
ifa > J then return
end
return o

function MIN-VALUE(state, game, o, 3) returns the minimax value of state

if CUTOFF-TEST(state) then return EVAL(sitafe)
for each s in SUCCESSORS|(state) do
3+ MIN(3. MAX-VALUE(s, game, ., /3))
if 3 < «a then return a
end
return /J

AP XCmOOIOO0OTOMOO®> 2

Solution

ODE

TYPE
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min

BETA SCORE

+l

+l

*| NODE

4l

10 10

10 ‘é

11 11 |,

10 10

+| Q

4 2

9 9 2

9 9 S

+] 10 R

10 v

10 W

10 v

14 14 -

10 10 | g
A

CS 460, Sessions 8-9

TYPE

Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max

ALPHA BETA

10 10
-1 10
10 +
10 +
10 +I
10 +
5 5
10 5
10 +l
10 +I
4 4
10 4
10 +
10 10
10 10

SCORE

10
10

o1 O

10
10
10

82

State-of-the-art for deterministic games

Checkers: Chinook ended 40-year-reign of human world champion Mar-
ion Tinsley in 1994. Used an endgame database defining perfect play
for all positions involving 8 or fewer pieces on the board, a total of
443 748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who
are too good.

Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge bases
to suggest plausible moves.

CS 460, Sessions 8-9

83

Nondeterministic games

E..g, in backgammon, the dice rolls determine the legal moves
Simplified example with coin-flipping instead of dice-rolling:

MAX

CHANCE

MIN

4 7 4

CS 460, Sessions 8-9 84

Algorithm for nondeterministic games

EXPECTIMINIMAX gives perfect play

Just like MINIMAX, except we must also handle chance nodes:

if state is a chance node then
return average of EXPECTIMINIMAX- VALUE of SUCCESSORS(state)

A version of a—f pruning is possible
but only if the leaf values are bounded. Why??

CS 460, Sessions 8-9 85

Remember: Minimax algorithm

function MINIMAX-DECISION(game) returns an operator

for each op in OrERATORS[game] do

VALUE[op] ¢ MINIMAX-VALUE{APPLY(0p, game), gome)
end
return the op with the highest VALUE[op]

function MINIMAX- VALUE{ state, game) returns a utility value

if TERMINAL- TEST[game](state) then

return UTILITY[game](state)
else if MAX ig to move in state then

return the highest MINIMAX-VALUE of SUCCESSCRS(state)
else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

CS 460, Sessions 8-9

86

Nondeterministic games: the element of chance

expectimax and expectimin, expected values over all possible outcomes

CHANCE O »
0.5 0.5
MAX /\ 3 AN
CHANCE SO (-1 ? O (-1
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MIN 2N/ a4\ / 0N/ -2/ 2\/ 8 Y\/ oY/ -2V
il 4 . 0 - 4 17 8 . 0 -

CS 460, Sessions 8-9 87

Nondeterministic games: the element of chance

0.5 0.5

MAX A\ 3 A 5

Expectimin 3 () @ -1 5 () () -1

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MIN 2N/ a4\ / 0N/ -2/ 2\/ 8 Y\/ oY/ -2V

il 4d b6 0 - 4 17 8 6 O -

CS 460, Sessions 8-9

88

Evaluation functions: Exact values DO matter

Order-preserving transformation do not necessarily behave
the same!

MAX

DICE

MIN

20 20 30 30 i 1 400 4«

CS 460, Sessions 8-9 89

State-of-the-art for nondeterministic games

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon = 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20 x (21 x 20)® ~ 1.2 x 10°

As depth increases, probability of reaching a given node shrinks
= value of lookahead is diminished

a—3 pruning is much less effective

CS 460, Sessions 8-9 90

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about Al

{» perfection is unattainable = must approximate

{ good idea to think about what to think about

{> uncertainty constrains the assignment of values to states

Games are to Al as grand prix racing is to automobile design

CS 460, Sessions 8-9 91

Exercise: Game Playing

Consider the following game tree in which the evaluation function values are
shown below each leaf node. Assume that the root node corresponds to the
maximizing player. Assume the search always visits children left-to-right.

(a) Compute the backed-up values
computed by the minimax O
algorithm. Show your answer by
writing values at the appropriate
nodes in the above tree. @ C @ () Min

(b) Compute the backed-up values D
computed by the alpha-beta
algorithm. What nodes will not
be examined by the alpha-beta E P F P G WP 1 @
pruning algorithm?

(c) What move should Max choose
once the values have been
backed-up all the way?

A Max

@ K Max

QD000 OO O O wmn

L M N O P Q R S T UV WX Y
2 3 8 5 7 6 0 1 5 2 8 4 10 2

CS 460, Sessions 8-9 92

