Logical reasoning systems

e Theorem provers and logic programming languages

e Production systems

e Frame systems and semantic networks

e Description logic systems

CS 460, Session 19

Logical reasoning systems

L |

e Theorem provers and logic programming languages — Provers: use
resolution to prove sentences in full FOL. Languages: use backward
chaining on restricted set of FOL constructs.

e Production systems — based on implications, with consequents
Interpreted as action (e.g., insertion & deletion in KB). Based on
forward chaining + conflict resolution if several possible actions.

e Frame systems and semantic networks — objects as nodes in a
graph, nodes organized as taxonomy, links represent binary
relations.

e Description logic systems — evolved from semantic nets. Reason
with object classes & relations among them.

CS 460, Session 19 2

Basic tasks

e Add a new fact to KB — TELL

e Given KB and new fact, derive facts implied by conjunction of KB
and new fact. In forward chaining: part of TELL

e Decide if query entailed by KB — ASK
e Decide if query explicitly stored in KB — restricted ASK

e Remove sentence from KB: distinguish between correcting false
sentence, forgetting useless sentence, or updating KB re. change in
the world.

CS 460, Session 19 3

Indexing, retrieval & unification

e Implementing sentences & terms: define syntax and map sentences
onto machine representation.

Compound: has operator & arguments.
e.g., ¢ = P(x) A Q(x) Op[c] = ~; Args[c] = [P(x), Q(x)]

e FETCH: find sentences in KB that have same structure as query.
ASK makes multiple calls to FETCH.

e STORE: add each conjunct of sentence to KB. Used by TELL.

e.g., implement KB as list of conjuncts
TELL(KB, A A —B) TELL(KB, —C A D)
then KB contains: [A, =B, —C, D]

CS 460, Session 19 4

Complexity
e With previous approach,
FETCH takes O(n) time on n-element KB

STORE takes O(n) time on n-element KB (if check for
duplicates)

Faster solution?

CS 460, Session 19

Table-based indexing

e What are you indexing on? Predicates (relations/functions).

Example:
Key Positive Negative Conclu- | Premise
sion
Mother | Mother(ann,sam) -Mother(ann,al) XXXX XXXX
Mother(grace,joe)
dog dog(rover) -dog(alice) XXXX XXXX
dog(fido)

CS 460, Session 19 6

Table-based indexing

e Use hash table to avoid looping over entire KB for each TELL or
FETCH

e.g., if only allowed literals are single letters, use a 26-element
array to store their values.

e More generally:

- convert to Horn form

- index table by predicate symbol

- for each symbol, store:
list of positive literals
list of negative literals
list of sentences in which predicate is in conclusion
list of sentences in which predicate is in premise

CS 460, Session 19

Tree-based indexing

e Hash table impractical if many clauses for a given predicate symbol

e Tree-based indexing (or more generally combined indexing):
compute indexing key from predicate and argument symbols

Predicate?

SN

First arg?

SN

CS 460, Session 19

Tree-based indexing

Example:

Person(age,height,weight,income)
Person(30,72,210,45000)

Fetch(Person(age,72,210,income))
Fetch(Person(age,height>72,weight<210,income))

CS 460, Session 19

Unification algorithm: Example

Understands(mary,x) implies Loves(mary,Xx)

Understands(mary,pete) allows the system to substitute pete
for x and make the implication that IF

Understands(mary,pete) THEN Loves(mary,pete)

CS 460, Session 19 10

Unification algorithm

e Using clever indexing, can reduce number of calls to
unification

« Still, unification called very often (at basis of modus
ponens) => need efficient implementation.

e See AIMA p. 303 for example of algorithm with O(n"™2)
complexity

(n being size of expressions being unified).

CS 460, Session 19

11

Logic programming

Remember: knowledge engineering vs. programming...

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. ldentify problem |dentify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork,US) than z := 2 + 2!

CS 460, Session 19 12

Logic programming systems
e.g., Prolog:

e Program = sequence of sentences (implicitly conjoined)
e All variables implicitly universally quantified
e Variables in different sentences considered distinct

e Horn clause sentences only (= atomic sentences or sentences with
no negated antecedent and atomic consequent)

e Terms = constant symbols, variables or functional terms
e Queries = conjunctions, disjunctions, variables, functional terms

e Instead of negated antecedents, use negation as failure operator:
goal NOT P considered proved if system fails to prove P

e Syntactically distinct objects refer to distinct objects
e Many built-in predicates (arithmetic, 1/0, etc)

CS 460, Session 19 13

Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques = 10 million LIPS

Program = set of clauses = head :- literal;, ... literal,.
Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3
Closed-world assumption (“negation as failure”)

e.g., not PhD(X) succeeds if PhD(X) fails

CS 460, Session 19 14

Basic syntax of facts, rules and queries

<fact> :[:= <term> .

<rule> :[:= <term> :- <term> .

<guery> :I:= <term> .

<term> :>:= <number> | <atom> | <variable>
| <atom> (<terms>)

<terms> :>:= <term> | <term>, <terms>

CS 460, Session 19

‘ A PROLOG Program |

e A PROLOG program iIs a set of facts and rules.
e A simple program with just facts :

parent(alice, jim).
parent(jim, tim).
parent(jim, dave).
parent(jim, sharon).
parent(tim, james).
parent(tim, thomas).

CS 460, Session 19

16

‘ A PROLOG Program |

e c.f. a table in a relational database.
e Each line is a fact (a.k.a. a tuple or a row).

e Each line states that some person X is a parent of some
(other) person Y.

e In GNU PROLOG the program is kept in an ASCI| file.

CS 460, Session 19 17

| A PROLOG Querx I

e Now we can ask PROLOG questions :
| ?- parent(alice, jim).
yes
| ?- parent(Jim, herbert).
no
| ?-

CS 460, Session 19

18

| A PROLOG Querx I

e Not very exciting. But what about this :

| ?- parent(alice, Who).
Who = jiIm

yes

| 2-

e Who Is called a /ogical variable.

e PROLOG will set a logical variable to any value
which makes the query succeed.

CS 460, Session 19 19

A PROLOG Query Il

e Sometimes there iIs more than one correct answer to a

query.

e PROLOG gives the answers one at a time. To get the next
answer type ;.

| ?- parent(Jim, Who).

Who =
Who
Who

yes
| -

tim ? ;
dave ? ;

sharon ?

CS 460, Session 19

/NB : The ;

do not
actually
appear on

the screen.

20

| A PROLOG Query I]

| ?- parent(jJim, Who). - _
Who = tim ? ; N%;mf ’
Who = sharon ? ; appear on
yes the screen.
| ?-

e After finding that j 1m was a parent of sharon

GNU PROLOG detects that there are no more
alternatives for parent and ends the search.

CS 460, Session 19 21

conjunction
Prolog example

Depth-first search from a start stare X:

dfs(X) :- goal(X).
dfs(X) :- successor(X,S).,dfs(S).

No need to loop over S: successor succeeds for each
Appending two lists to produce a third:

append([],Y,Y).
append([X|L],Y,[X[Z]) :- append(L,Y,Z).

query: append(A,B, [1,2]) 7

answers: A=[] B=[1,2]
A=[1] B=[2]
A=[1,2] B=I[]

Append

e append([], L, L)

e append([H] L1], L2, [H] L3]) :- append(L1,
L2, L3)

e Example join [a, b, c] with [d, e].
e [a, b, c] has the recursive structure [a] [b, c]].
e Then the rule says:

e |F [b,c] appends with [d, e] to form [b, c, d, e] THEN
[a]|[b, c]] appends with [d,e] to form [a]][Db, c, d, e]]

e l.e. [a, b, C] [a, b, c, d, €]

CS 460, Session 19 23

Expanding Prolog

Parallelization:
OR-parallelism: goal may unify with many different literals and
iImplications in KB
AND-parallelism: solve each conjunct in body of an implication
In parallel

Compilation: generate built-in theorem prover for different
predicates in KB

Optimization: for example through re-ordering
e.g., “what is the income of the spouse of the president?”
Income(s, 1) A Married(s, p) A Occupation(p, President)
faster if re-ordered as:
Occupation(p, President) A Married(s, p) A Income(s, i)

CS 460, Session 19 24

Theorem provers

e Differ from logic programming languages in that:
- accept full FOL
- results independent of form in which KB entered

CS 460, Session 19

25

OTTER

e QOrganized Techniques for Theorem Proving and Effective Research
(McCune, 1992)

e Set of support (sos): set of clauses defining facts about problem
e Each resolution step: resolves member of sos against other axiom

e Usable axioms (outside sos): provide background knowledge about
domain

e Rewrites (or demodulators): define canonical forms into which
terms can be simplified. E.g., x+0=Xx

e Control strategy: defined by set of parameters and clauses. E.g.,
heuristic function to control search, filtering function to eliminate
uninteresting subgoals.

CS 460, Session 19 26

OTTER

e Operation: resolve elements of sos against usable axioms

e Use best-first search: heuristic function measures “weight” of each
clause (lighter weight preferred; thus in general weight correlated
with size/difficulty)

e At each step: move lightest close in sos to usable list, and add to
usable list consequences of resolving that close against usable list

e Halt: when refutation found or sos empty

CS 460, Session 19 27

[DI

File Edit View GoO Communicator Help
423 Sou S8
EX am p I e .. . Bookmarks & Location: l[http:ffmw—unix.mcs. anl. gov/AR/otter/ ,f‘ 517 What's Related
T & Google o Gscout g Library ¢ WoS # Pubhed o INSPEC ¢ JTrack ¢ Researchindex ¢ Webadmin 4 CvSweb 4 HC Params
A

Otter: An Automated Deduction System

Updated August 13, 2001

Contents

. Description
. Computational Environrment

. AvailahilityVersion 3.2 26k

Documentation

. Ezample Inputs %
Becent Accomplishments

Performance on the TPTP Problems

. Bugs and Fixes
. Otter-users Mailing List

Related Pages

Try Otter righe now with Son OfBirdBrain

A sample Ctter proof

Mewr Results obtained with Otter and related programs
MACE, aprogram that searches for small models

EQP, aprover for equational logic with associative unification
Automated Reasoning af Argonne

External Work

Johan Belinfante's Set Theory Work with Otter
Some other theorem provers

L]
a
s Ottermode for Emacs (from Helger Schauer)
a
L]

GOAL, by Guoxiang Huang and Dale Myers
& student project on Otter by Jackson Pauls

Deescription

Crur current autornated deduction systern Otter is designed to prove theorerms stated in first-order logic with equality. Otter's inference rules are based on :
resolufion and pararmodulation, and it includes facilifies for term rewriting, term orderings, Enuth-Bendiz completion, weighting, and strategies for directing £

= [1 3% %ds P B v

Example: Robbins Algebras Are Boolean

e The Robbins problem---are all Robbins algebras
Boolean?---has been solved: Every Robbins algebra is
Boolean. This theorem was proved automatically by

EQP, a theorem proving program developed at Argonne
National Laboratory

CS 460, Session 19 29

Example: Robbins Algebras Are Boolean

Historical Background

e In 1933, E. V. Huntington presented [1,2] the following basis for
Boolean algebra:

e X+ Yy =y + X. [commutativity]
e (X+vy)+z=x+(y+ z). [associativity]
e n(n(x) +vy) + n(n(x) + n(y)) = x. [Huntington equation]

e Shortly thereafter, Herbert Robbins conjectured that the Huntington
eguation can be replaced with a simpler one [5]:

e n(n(x +y) + n(x+ n(y))) = x. [Robbins equation]
e Robbins and Huntington could not find a proof, and the problem was
later studied by Tarski and his students

CS 460, Session 19 30

Example: Winker Conditions (1979)

e all x, n(n(x))=x

e 30 all X, x+0=x

e all x, x+x=x

e 1. 3C 3D, C+D=C

e 2nd: 3 C 3D, n(C+D)=n(C)

CS 460, Session 19

31

Example: Otter: October 10, 1996

e n(n(n(y)+x)+n(x+y)) = x. [Robbins equation]
e n(x+y) '= n(x). [denial of 2nd Winker condition]

CS 460, Session 19

32

CS 460, Session 19 33

Searching . ..

Success, 1n 1.28 seconds!

———————————————— PROOF ----————————————=

1 nin(d)+B)+nin(a)+n(B)) I =h. [

2 =K.]

a M=, [

5.4 (x+y) +z=x+ (y+Z]. []

6 n {0 (z+y) +n (70 (y))) =x. []

] HHH=K. []

10 nin(a)+n(B)) +nin(h) +B) =k, [pacra from, 3, 1]

13 Kt (HHY) =Y. [para into, 4,8, flip. 1]

15 X+ (y+z)=y+ (x+2). [para into, 4, 3, demod, 5]

23, 22 H+ [FHE) =H4Y. [para_into, 13, 3]

26 nin (2 +n(x+n ())) =x. [para_into, 6, 8]

3B nin(n () +2) +nin (=)) =nix) . [para_into, &, B]

4% niniz+n iy) +nizey)) =5 [para_1into, &, 3]

5a X+ (y+z)=x+ (z+y). [para into, 15, 3, demod, 5]

g1, 80 nln(+n ()) +n(x)) =%, [para_ into, 26, 3]

g2 nln (i (200 +32) +30) =n () . [para_from, 26, 6, demod, 23]

125 afniniz+n ())+ o) +x))+ =n(x+nix)) +n(x) . [para into, 80, 80, demod, 5, 81]
134 n(n (n (2een (300) 4200 +20) =n (+n ()) . [paca from, 80, &]

166, 165 ninz+n ()) +x) =n(x) . [para into, 82, 3]

180,179 ninx)+x)=ni(x+n=)). [back demod, 139, demod, 166]

195 nin(F+n ()) +nin ())) =nix) . [back demod, 36, demod, 180]

197 nln(x+ (o) +n(x+n(x))))+ (nix+n(x)) +x)) =n(x). [para_into, 165, 165, demod, 5, 180, 5, 166]
206, 205 ninix+ (o) +nix+n(=)))) +n(x)) =nix+n(x)) +x. [para from, 165, B0, demod, 166, 5, 1580, 5]
2243, 222 ninix+yr+ (y+x)i=nizx+e (yeo(x+y))) . [para_1into, 179, 52, demod, 5]
231, 230 nin(x+ (n(x)+n(z+n(x))))+ =n(x+n(x)) +n(x). [back demod, 125, demod, 223]
Sed, 563 n(x+nix)) +x=x. [para_into, 195, 80, demod, 5, 223, 81, 206, 81]
582,581 nix+tn(z)) +nix)=nix). [back demod, 197, demod, 564, 231]
586,585 nini(x))=x. [hack demod, 80, demod, 582]

BOE, 605 nizx+eniy)) +nix+y) =nix) . [para_1into, 585,42, flip. 1]

B21 Al=h [back demod, 10, demod, EDE 53e]
2 iF. [binary, 621, 2]

Forward-chaining production systems

e Prolog & other programming languages: rely on
backward-chaining

(I.e., given a query, find substitutions that satisfy it)

e Forward-chaining systems: infer everything that can be
Inferred from KB each time new sentence is TELL'ed

e Appropriate for agent design: as new percepts come in,
forward-chaining returns best action

CS 460, Session 19 35

Implementation

One possible approach: use a theorem prover, using resolution to
forward-chain over KB

More restricted systems can be more efficient.

Typical components:
- KB called “working memory” (positive literals, no variables)
- rule memory (set of inference rules in form
PLAP2A..= actl A act2 A ...
- at each cycle: find rules whose premises satisfied
by working memory (match phase)
- decide which should be executed (conflict resolution phase)
- execute actions of chosen rule (act phase)

CS 460, Session 19

36

Match phase

e Unification can do it, but inefficient

e Rete algorithm (used in OPS-5 system): example
rule memory:

A(X) A B(X) A C(y) = add D(x)

A(X) A B(y) A D(X) = add E(x)

A(X) A B(X) A E(X) = delete A(X)
working memory:

{A(1), A(2), B(2), B(3), B(4), C(5)}

e Build Rete network from rule memory, then pass working memory
through it

CS 460, Session 19

37

Rete network

C(5) D(2)

’l delete A ‘

A1), B(2), A(2),
A(2) B(3), B(2)
B(4)

Circular nodes: fetches to WM; rectangular nodes: unifications
A(X) A B(X) A C(y) = add D(x)
A(X) A B(y) A D(X) = add E(x)
A(X) A B(X) A E(X) = delete A(X)

{A(1), A(2), B(2), B(3), B(4), C(5)}
CS 460, Session 19

38

A(X) A B(X) A C(y) = add D(x)
Rete match A(X) A B(y) A D(x) = add E(X)
A(X) A B(X) A E(X) = delete A(X)

Al AdiE |

D(2) o £2)
‘ ‘ X/?2
A(1), A(2) B(2)BB)B(A) A« ;:/g) D(2)

B(2)
X/2

" Delete |

E(2)
{ A1), A(2), B(2), B(3), B(4), C(5), D(2), E(2)} E/(ZZ) Delete A(2)

CS 460, Session 19 39

Advantages of Rete networks

Share common parts of rules

Eliminate duplication over time (since for most production systems
only a few rules change at each time step)

CS 460, Session 19 40

Conflict resolution phase

e one strategy: execute all actions for all satisfied rules

e or, treat them as suggestions and use conflict resolution to pick one
action.

e Strategies:
- no duplication (do not execute twice same rule on same args)
- regency (prefer rules involving recently created WM elements)
- specificity (prefer more specific rules)
- operation priority (rank actions by priority and pick highest)

CS 460, Session 19 41

Frame systems & semantic networks

Other notation for logic; equivalent to sentence notation

Focus on categories and relations between them (remember
ontologies)

Subset
e.g., Cats » Mammals

CS 460, Session 19

42

Syntax and Semantics

Link Type Semantics

ASUSEt g AcB

AV B AeB

A R—) B R(A,B)

ASS B Vx X € A= R(Xy)

A E) B Vx3dyx e A=y eB AR(XY)

CS 460, Session 19

Semantic Network Representation

can Breath

Animal SKkin
canm~ Move

Is 3 | can
FIy

Bird as Wlngs Fish

/ \Feathers

Canary Ostrich

cay \s cann})f NS
Sing Yellow Fly Tall

CS 460, Session 19

Semantic network link types

Link type

Subset
A

A

Member
>

»B

B

R

R

>B

» B

>B

Semantics Example
Subset
AcB Cats—> Mammals
AcB gill MCMOEr, ot
_ Age
R(A, B) Bill > 12
Legs
VX X e A= R(X, B) Birds > 2
Parent
vx3dyx e A=y e BAR(X,y) Birds » Birds

CS 460, Session 19

45

Description logics

FOL: focus on objects

Description logics: focus on categories and their definitions

Principal inference tasks:
- subsumption: is one category subset of another?

- classification: object belings to category?

CS 460, Session 19

46

CLASSIC

e And(concept, ...)

e All(RoleName, Concept)

e AtLeast(Integer, RoleName)

e AtMost(Integer, RolaName)

e Fills(RoleName, IndividualName, ...)
e SameAs(Path, Path)

e OneOf(IndividualName, ...)

e.g., Bachelor = And(Unmarried, Adult, Male)

CS 460, Session 19

47

