Planning

e Search vs. planning
e STRIPS operators
e Partial-order planning

CS 460, Session 20

What we have so far

e (Can TELL KB about new percepts about the world

e KB maintains model of the current world state

e (Can ASK KB about any fact that can be inferred from KB

How can we use these components to build a planning agent,

l.e., an agent that constructs plans that can achieve its goals, and that
then executes these plans?

CS 460, Session 20 2

Example: Robot Manipulators

N s = r ey el To e ol

® Exam ple : (courtesy of Martin Rohrmeier)
e Puma 560
* Kré

CS 460, Session 20 3

Remember: Problem-Solving Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(p) returns an action
inputs: p, a percept
static: s, an action sequence, initially empty
state, some description of the current world state
¢, a goal, initially null
problem, a problem formulation

state +— UPDATE-STATE(state, p)

if s is empty then
¢4+ FORMULATE-GOAL(state)
problem < FORMULATE-PROBLEM(state, g)
$4— SEARCH(problem)

action +— RECOMMENDATION(s, state)

s+ REMAINDER(s, state)

return action

Note: This is offline problem-solving. Online problem-solving involves
acting w/o complete knowledge of the problem and environment

CS 460, Session 20

Simple planning agent
e Use percepts to build model of current world state

« IDEAL-PLANNER: Given a goal, algorithm generates plan of action

e STATE-DESCRIPTION: given percept, return initial state description
In format required by planner

e MAKE-GOAL-QUERY: used to ask KB what next goal should be

CS 460, Session 20

A Simple Planning Agent

function SIMPLE-PLANNING-AGENT (percept) returns an action
static: KB, a knowledge base (includes action descriptions)
p, a plan (initially, NoPlan)
t, a time counter (initially 0)
local variables:G, a goal
current, a current state description
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
current «— STATE-DESCRIPTION(KB, t)
if p = NoPlan then
G « ASK(KB, MAKE-GOAL-QUERY(t))
p < IDEAL-PLANNER(current, G, KB)
if p = NoPlan or p is empty then
action <~ NoOp

else

action < FIRST(p) _ _

D <« REST(p) Like popping from a stack
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t <« t+1

return action

Search vs. planning

Consider the task get milk, bananas, and a cordless drill

Standard search algorithms

seem to fail miserably:

Talk to Parrot

Buy a Dog

-

Go To Class

Start

-

Buy Tuna Fish

-

Buy Arugula

Buy Milk

Sit Some More

—

Go To Pet Store

-]
3o To School

-]
Go To Supermarket

-
Go To Sleep

-]
Read A Book
Sit in Chair
Etc. Etc. ...

Y

Read A Book
_—

After-the-fact heuristic/goal test inadequate

Finish

Search vs. planning

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning
States |Lisp data structures | Logical sentences
Actions | Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from Sy | Constraints on actions

CS 460, Session 20 8

Planning in situation calculus

PlanResult(p, s) is the situation resulting from executing p in s
PlanResult([], s) = s
PlanResult([a|p], s) = PlanResult(p, Result(a, s))

Initial state At(Home,Sy) N ~Have(Milk,Sy) A ...

Actions as Successor State axioms
Have(Milk, Result(a,s)) <
[(a = Buy(Milk)AAt(Supermarket, s))V (Have(Milk, s)ANa # .. .)]

Query
s = PlanResult(p, Sy) A At(Home, s) N Have(Mzulk,s) A ...

Solution

p = |Go(Supermarket), Buy(Milk), Buy(Bananas), Go(HWS), ..]
Principal difficulty: unconstrained branching, hard to apply heuristics

CS 460, Session 20 o]

Basic representation for planning

Most widely used approach: uses STRIPS language

states: conjunctions of function-free ground literals (l.e., predicates
applied to constant symbols, possibly negated); e.g.,

At(Home) A —Have(Milk) A —Have(Bananas) A —Have(Drill) ...

goals: also conjunctions of literals; e.g.,
At(Home) A Have(Milk) A Have(Bananas) A Have(Drill)
but can also contain variables (implicitly universally quant.); e.g.,

At(x) A Sells(x, Milk)

CS 460, Session 20 10

Planner vs. theorem prover

e Planner: ask for sequence of actions that makes goal true if executed

e Theorem prover: ask whether query sentence is true given KB

CS 460, Session 20 11

STRIPS operators

Tidily arranged actions descriptions, restricted language

AcCTION: Buy(x)
PRECONDITION: At(p), Sells(p,x)
EFFECT: Have(x)

[Note: this abstracts away many important details!]

Restricted language = efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

At(p) Sells(p,x)

Graphical notation: Buy(x)

Have(x)

Types of planners

e Situation space planner: search through possible situations

e Progression planner: start with initial state, apply operators until
goal is reached

Problem: high branching factor!

e Regression planner: start from goal state and apply operators until
start state reached

Why desirable? usually many more operators are applicable to
Initial state than to goal state.
Difficulty: when want to achieve a conjunction of goals

Initial STRIPS algorithm: situation-space regression planner

CS 460, Session 20 13

State space vs. plan space

Standard search: node = concrete world state

Planning search: node = partial plan | Search space of plans rather
than of states.

Defn: open condition is a precondition of a step not yet fulfilled

Operators on partial plans:

add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another

sradually move from incomplete /vague plans to complete, correct plans

CS 460, Session 20 14

Operations on plans

Refinement operators: add constraints to partial plan

Modification operator: every other operators

CS 460, Session 20

15

Types of planners

e Partial order planner: some steps are ordered, some are not

e Total order planner: all steps ordered (thus, plan is a simple list of
steps)

e Linearization: process of deriving a totally ordered plan from a
partially ordered plan.

CS 460, Session 20

16

Partially ordered plans

Start

/N

Start Left Right
Sock Sock
LeftShoeOn, l RightShoeOn LeftSockOn RightSockOn
Left Right
Finish Shoe Shoe

\ /

[eftShoeOn, RightShoeOn

Finish

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it

Plan

We formally define a plan as a data structure consisting of:

Set of plan steps (each is an operator for the problem)

Set of step ordering constraints
e.g.,AILB means “A before B”
e Set of variable binding constraints

e.g.,v=xX where v variable and x constant or other variable

Set of causal links

e.g., A e means “A achieves c for B”

CS 460, Session 20

18

POP algorithm sketch

function PO (initial, goal, operators) returns plan

plan + MAKE-MINIMAL-PLAN(#nitial, goal)

loop do
if SoLvTioN?(plan) then return plan
Spueeds €4 SELECT-SUBGOALI plan)
CHOOSE-OPERATOR(plan, operators, S,..q. ¢
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns .S,,. . ¢

pick a plan step S04 from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,..4. ¢

CS 460, Session 20

19

POP algorithm (cont.)

procedure CHOOSE-OPERATOR(plan. operators, S,..q. ¢)

choo e a step S,yq from eperators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail
add the causal link S,qq —5 Speeq to LINKS(plan)
add the ordering constraint Sygq < Speed to ORDERINGS(plan)
if S,qq 1s a newly added step from operators then
add S,4q to STEPS(plan)
add Start < S.q¢ < Finish to ORDERINGS| plan)

procedure RESOLVE-THREATS(plan)

for each S, .« that threatens a link S; =5 §; in LINKS(plan) do
choo e either
Demotion: Add Syppeqr <= S; to ORDERINGS(plan)
Promotion: Add S; < Siprear to ORDERINGS (plan)
if not ConsisTENT(plan) then fail
end

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Clobbering and promotion/demotion

A clobberer Is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(HWS):

—_— ——

e T .)
{ : DEMOTION Demotion: put before Go(HW S)
Go(HWS) |
|
\
N~
| Go(Home)
=
Jrj’ At(Home)
/
At(HWS : .
Llatd) | Promotion: put after Buy(Drill)
Buy(Drill) |
'k /
S~ . _,f/)
PROMOTION o e
Finish

CS 460, Session 20 21

Example: block world

"Sussman anomaly" problem

Bl[A

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x, Table)

Clear(z) On(x,y)

+ several inequality constraints ,

Example (cont.)

START
On(C,A) On(A, Table) CI(B) On(B, Table) CI(C)

On(A,B) On(B,C)

FINISH

23

Example (cont.)

START

On(C,A) On(A, Table) CI(B) On(B, Table) CI(C)

\l

c}s) On?B,z) cx,c:)

PutOn(B,C)

/

On(A,B) On(B,C)

FINISH

o]o]>)

24

Example (cont.)

START

On(C,A) On(A,Table) CI(B) On(B,Table) CI(C)

|
CI(A) On(x!,z) cwg)

PutOn(A,B)

L

\

On}A,B}

e

\

i~

c}s) On,B,z) CI,C)

~| PutOn(B,C)

/

On(B,C)

FINISH

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

25

Example (cont.)

START

On(C,A) On(A,Table) CI(B) On(B, Table) CI(C)

)

il
On(C,z) CI(C)

PutOnTable(C) A,

o]

o

\ ™~
N,

CI(A) On{;!,z) Cl(

e

PutOn(A,B) =~

\

On'(‘A, B)

-~

S

——

= g)\\ c;?s) On,B, 2) cr,c:)

L

~| PutOn(B,C)

/

#
On(B,C)

FINISH

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

PutOn(B,C)
clobbers CI(C)
=> order after
PutOnTable(C)

26

