
1

Resource Description Framework
(RDF)

• By David Wilczynski, USC, dwilczyn@usc.edu
• Based on: http://www.w3.org/TR/rdf-primer/

– which is edited by:
– Frank Manola, The MITRE Corporation, fmanola@mitre.org

– Eric Miller, W3C, em@w3.org

2

1. Introduction

• RDF is a language for:
– (1) representing information about resources in

the World Wide Web,
– (2) presenting metadata about Web resources,

such as the title and author of a Web page.
• Resources are things that can be identified on the

Web, even when they can't be directly retrieved on
the Web. Any person is an example of a resource.

• RDF is computer readable and “understandable.”

3

An RDF Graph Describing
Eric Miller

4

The same RDF in XML
<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
xmlns:contact="http://www.w3.org/2000/10/swap/pim/conta
ct#"> <contact:Person

rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>
<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>
</contact:Person>
</rdf:RDF>

• This says that there is a person whose name is Eric
Miller, whose email address is em@w3.org, and whose
personal title is "Dr.".

5

The Big Idea

• Besides Web pages, we can now convey
information about cars, businesses, people,
news events, etc.

• Further, RDF references themselves can be
labeled, to indicate the kind of relationship
that exists between the linked items.

• Maybe Web programs can be smarter!!

6

2. Making Statements About
Resources

• RDF is intended to provide a simple way to
make statements about Web resources, such
as Web pages.

• This section describes how RDF does this.

7

2.1 Basic Concepts

"http://www.example.org/index.html has a creator
whose value is John Smith"

• Every RDF statement is a triple of the form:
(subject, property, object)

• In the example statement above:
– the Web page's URL is the subject .
– "creator" is a property (or predicate) of that page,
– "John Smith" is the value or object of the property.

8

More Properties

• We can state other properties of this Web
page:
– http://www.example.org/index.html has a creation-

date whose value is August 16, 1999
– http://www.example.org/index.html has a language

whose value is English

• In RDF, resources are described in terms of
these triples, (subject, property, object).

9

Uniform Resource Identifiers
(URIs)

• In real life we use names to refer to
resources: "Bob", "The Moon", "373
Whitaker Ave.", "California", "VIN
2745534", "today's weather".

• But, names are ambiguous.
• To resolve this problem we use URIs to

name things in the Web.

10

Uniform Resource Locators
(URLs)

• The Web already provides one form of identifier,
the Uniform Resource Locator (URL).

• We used a URL in our original example to
identify the Web page that John Smith created.

• A URL is a character string that identifies a Web
resource by its network location.

• But there are lots of resources besides retrievable
ones. Hence, the URI is more general.

11

There are More than Just Pages
on the Web

• We would like to be able to record information
about many things in addition to Web pages:
– For example, a human being has contact information

(email, phone), medical information, hobbies, etc.

• But, certainly a human has no URL, though he
may have a home page with a URL.

• We must try to formally identify various kinds of
things that go by names such as "Social Security
Number", or "Part Number" by using URIs.

12

URI to Name Anything

• We can create a URI to refer to anything we want
to talk about, including:
– network-accessible things, such as an HTML doc.
– things that are not network-accessible, such as

humans, corporations, and books in a library.
– abstract concepts that don't physically exist, like

that of a “unicorn".
• URIs constitute an infinite stock of names.

13

URIs and RDF
• RDF uses URI references to define its subjects,

predicates, and objects.
• A URI reference (or URIref) is a URI, together

with an optional fragment identifier at the end.
• E.g., the URI

http://www.example.org/index.html#section2
consists of:
– the URI http://www.example.org/index.html
– the fragment identifier: section2.

• A resource is identifiable by a URI reference

14

RDF and XML

• RDF is a graph—the object of one
statement can be the subject of another.

• Extensible Markup Language (XML)
provides us with:
– a linear representation of this graph;
– and, as such, a way for exchanging RDF

statements between applications.

15

2.2 The RDF Model

• In RDF, the English statement:
"http://www.example.org/index.html has a
creator
whose value is John Smith."
could be represented in RDF as a triple:

–Subject: http://www.example.org/index.html
–Predicate:

http://purl.org/dc/elements/1.1/creator
–Object: http://www.example.org/staffid/85740

• Note the URIrefs instead of the words
"creator" and "John Smith".

16

RDF Nodes and Arcs in a Graph

17

Groups of statements
• Adding new statements
http://www.example.org/index.html has a creation-date of August

16, 1999.
http://www.example.org/index.html has a language whose value is

English.

18

Groups of statements (cont.)

• Objects of RDF statements
– may be resources identified by URIrefs,
– or constant values (plain or typed literals),

• Literals can't be subjects of RDF statements

19

Triple Representation
<http://www.example.org/index.html>
<http://purl.org/dc/elements/1.1/creator>
http://www.example.org/staffid/85740 .

<http://www.example.org/index.html>
<http://www.example.org/terms/creation-date>
"August 16, 1999" .

<http://www.example.org/index.html>
<http://www.example.org/terms/language>
"English" .

• Each triple corresponds to a single arc in the graph.
• Triples have the same information as the graph.

20

Prefix As Namespace Identifier

• Prefix stands for a namespace URI.
ex:index.html dc:creator exstaff:85740 .
ex:index.html exterms:creation-date "August 16, 1999" .
ex:index.html exterms:language "English" .

• In the above triples:
ex:, dc:, exstaff:, and exterms: are URI prefixes.

• A name like ex:index.html is called a QName.

21

Review: URI’s Identify Resources
• Creator of web page is identified by a URI.
• The URI has a name property with value

"John Smith" and an age property of 27:

22

Review: RDF uses URIrefs as
predicates

• The URIref http://www.example.org/terms/name is a
predicate; NOT the string “name”.

• URIrefs are unique; strings aren’t.
• Predicates are resources themselves and can

have descriptive properties, e.g. printstring
http://www.example.org/terms/name dc:printstring "Name:" .

23

Review: RDF as Shared
Vocabulary

• For example, in the triple:
ex:index.html dc:creator exstaff:85740 .

the predicate dc:creator is an unambiguous
reference in the Dublin Core metadata
attribute set.

• People can still use different URIrefs to
refer to the same thing.

24

Review: Simpler for Applications
• RDF provides a way to make statements that

applications can process more easily:
– A program could search the Web for all book reviews

and create an average rating for each book, and put that
information back on the Web.

– Another site could take that list of averages and create a
"Top Ten Highest Rated Books" page.

• Key: a shared vocabulary about books and ratings.

25

2.3 Structured Property Values
and Blank Nodes

• The exterms:address property can be filled by a literal
like “1501 Grant Avenue, Bedford, Massachusetts 01730”.

• What about a structure consisting of separate
street, city, state, and zip code values?

• We could model the address as a resource, give it
a URIref say: http://www.example.org/addressid/85740

and then make statements about it.

26

Something like:

• Nodes like John's address may not require
"universal" identifiers.

• Nodes with only local meaning can be blank.

27

Using A Blank Node

• Here the blank node stands for the concept
of "John Smith's address".

28

Blank Node Identifiers
• Blank nodes must have a name for triple usage.
• Blank node identifiers have the form _:name

exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street"1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:zip"01730" .

• If a node in a graph needs to be referenced from
outside this context, a URIref is required.

• Blank nodes make binary relationships out of an
n-ary one (between John and the street, city, etc.).

29

Blank Nodes For Correct
Modeling

• Suppose Jane Smith has no URI but has
email: mailto:jane@example.org.

• Should we use it as her URI?
• Putting age information about Jane on this

URI is plain wrong!!!

30

Using A Blank Node
• A Blank Node To Represent Jane:

_:jane exterms:mailbox mailto:jane@example.org .
_:jane rdf:type exterms:Person .
_:jane exterms:name "Jane Smith" .
_:jane exterms:empID "23748" .
_:jane exterms:age "26" .

• The resource named _:jane has:
– type exterms:Person
– email with value mailto:jane@example.org
– name with value Jane Smith
– etc.

31

2.4 Typed Literals

• "John is 27 years old." 27 is an integer, not a string.
<http://www.example.org/staffid/85740>
<http://www.example.org/terms/age>
"27"^^<http://www.w3.org/2001/XMLSchema#integer> .

• Using our QName simplification:
exstaff:85740 exterms:age "27"^^xsd:integer .

• Similarly a date triple might be
ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

• Datatypes: http://www.w3.org/TR/xmlschema-2/
RDFS: http://www.w3.org/TR/rdf-concepts/

32

Typed literals vs. Programming
datatypes

• They are NOT the same.
• A typed literal must be interpreted by an

RDF processor that "understands" it.
– For example, you could write the triple:

exstaff:85740 exterms:age "pumpkin"^^xsd:integer .

– A datatype-aware processor would reject it.

33

2.5 Summary (so far)

• RDF is simple.
• We need to define the vocabularies used in

those statements.
• RDF vocabularies (schemas) will be

described later.

34

3. An XML Syntax for RDF:
RDF/XML

• RDF's conceptual model is a graph of nodes
and arcs.

• Triples are one textual, shorthand notation.
• RDF/XML is the normative way of writing

down and exchanging RDF graphs.

35

3.1 Basic Principles

"http://www.example.org/index.html has a creation-date
of August 16, 1999"

ex:index.html exterms:creation-date "August 16, 1999" .

36

In RDF/XML Syntax
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:exterms="http://www.example.org/terms/">
<rdf:Description

rdf:about="http://www.example.org/index.html">
<exterms:creation-date>August 16,1999

</exterms:creation-date>
</rdf:Description>

</rdf:RDF>

37

RDF for Multiple Statements

ex:index.html dc:creator exstaff:85740 .
ex:index.html exterms:creation-date "August 16, 1999" .
ex:index.html exterms:language "English" .

38

Here’s the RDF/XML (an
abbreviated form)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:exterms="http://www.example.org/terms/">

<rdf:Description
rdf:about="http://www.example.org/index.html">
<exterms:creation-date>August 16, 1999</exterms:creation-
date> <exterms:language>English</exterms:language>
<dc:creator
rdf:resource="http://www.example.org/staffid/85740"/>

</rdf:Description>
</rdf:RDF>
• Could have done this with 3 rdf:Description blocks

39

Empty-Element Tag

• Notice the dc:creator element with an attribute
whose value is another resource:
<dc:creator
rdf:resource="http://www.example.org/staffid/85740"/>

• This is called an empty-element tag.
• If we had instead written:

<dc:creator>http://www.example.org/staffid/85740</dc:cr
eator>

That would have defined the creator as a string
literal (that looks like a URIref, but isn't).

40

More RDF/XML Abbreviations

• RDF/XML has many ways to say the same
thing. Often, very confusing.

• Consult http://www.w3.org/TR/rdf-primer/#ref-rdf-syntax
for more details.

41

Blank Node Abbreviations

42

Blank Nodes in RDF/XML

• Use a blank node identifier for the blank node
when you don't have a URIref for the resource.
– As a Subject:

<rdf:Description rdf:nodeID=”someName”>
instead of
<rdf:Description rdf:about=“someUriRef">

– As an object:
<dc:creator rdf:nodeID="someName"/> instead
of <dc:creator rdf:resource=“someUriRef”

43

RDF/XML For a Blank Node
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#" xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:exterms="http://example.org/stuff/1.0/">

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-
grammar">

<dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
<exterms:editor rdf:nodeID="abc"/>

</rdf:Description>
<rdf:Description rdf:nodeID="abc">

<exterms:fullName>Dave Beckett</exterms:fullName>
<exterms:homePage
rdf:resource="http://purl.org/net/dajobe/"/>

</rdf:Description>
</rdf:RDF>

44

RDF/XML Using a Typed Literal
• Can add a URIref for a datatype as an attribute to a

triple as follows:
ex:index.html exterms:creation-date "1999-08-16" becomes
ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

• The RDF/XML part becomes:
<exterms:creation-date

rdf:datatype= "http://www.w3.org/2001/XMLSchema#date">
1999-08-16

</exterms:creation-date>

where 1999-08-16 is the literal representation for August
16, 1999 in the XML Schema #date datatype.

• Can also use XML ENTITY to improve readability
(see Primer for details).

45

Summary: A General Way To
Serialize Graphs In RDF/XML.

• All blank nodes are assigned blank node identifiers.
• A subject of an un-nested rdf:Description element uses:

– an rdf:about attribute if the node has a URIref,
– or an rdf:nodeID attribute if the node is blank.

• Every object of a triple has either:
– literal value (possibly empty),
– an rdf:resource attribute if the object has a URIref,
– or an rdf:nodeID attribute if the object is blank.

46

3.2 Abbreviating and Organizing
RDF URIrefs

• Sometimes we want to achieve the effect of
assigning URIrefs to resources that are part of an
"organizing" resource, like a catalog.

• Imagine a sporting goods company, example.com,
producing an RDF-based catalog of its products.

• Suppose the catalog is at:
http://www.example.com/2002/04/products

• In that catalog resource, each product might be
given a separate RDF description using rdf:ID.

47

Catalog Entries
• RDF/XML for catalog for “Overnighter” tent
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-
ns#
xmlns:exterms="http://www.example.com/terms/">

<rdf:Description rdf:ID="item10245">
<exterms:model>Overnighter</exterms:model>
<exterms:sleeps>2</exterms:sleeps>
<exterms:weight>2.4</exterms:weight>
<exterms:packedSize>14x56</exterms:packedSize>

</rdf:Description>
...other product descriptions...

</rdf:RDF>

48

Fragment Identifiers
• Notice use of rdf:ID attribute instead of an rdf:about

attribute in:
<rdf:Description rdf:ID="item10245">

• The attribute rdf:ID indicates a fragment identifier.
• Its absolute URIref is:

http://www.example.com/2002/04/products#item10245.

• Similar to the ID usage attribute in XML and HTML.
• ID must be unique within the document.
• Other statements in this catalog could use an attribute

with relative URIref rdf:about=”#item10245”

49

Outsider Referring to the Catalog
• Outsiders could refer to this tent with the full URIref:

http://www.example.com/2002/04/products#item10245.
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd

"http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:sportex="http://www.exampleRatings.com/terms/">
<rdf:Description

rdf:about="http://www.example.com/2002/04/products#item10245">
<sportex:ratingBy>Richard Roe</sportex:ratingBy>
<sportex:numberStars

rdf:datatype="&xsd;integer">5</sportex:numberStars>
</rdf:Description>
</rdf:RDF>

50

Outsider Referring to the Catalog
• Note that RDF does not assume any particular

relationship exists between:
http://www.example.com/2002/04/products#item10245 and
http://www.example.com/2002/04/products

• Having the same base "means" nothing. They are just
two resources.

• This further illustrates that the RDF describing a
particular resource does not need to be located all in
one place.

51

Base URI

• Fragment identifiers such as #item10245 will
be interpreted relative to a base URI.

• By default, this base URI is the resource in
which the fragment identifier is used.

• Not always desirable—Consider use of
mirror sites.

52

Base URI (cont.)
• RDF/XML supports XML Base.
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:exterms="http://www.example.com/terms/"
xml:base="http://www.example.com/2002/04/products">

<rdf:Description rdf:ID="item10245">
…

</rdf:Description>
...other product descriptions...

</rdf:RDF>

• Our tent, #item10245, will have the same URIref,
http://www.example.com/2002/04/products#item10245

no matter what the URI of the catalog is.

53

RDF types (or classes)
• RDF supports types using a property rdf:type

• The value of the rdf:type property is a resource.
• The subject of the property is an instance of the type:

<rdf:Description rdf:ID="item10245">
<rdf:type rdf:resource="http://www.example.com/terms/Tent" />
…

</rdf:Description>

• So, item10245 is an instance of http://www.example.com/terms/Tent

• Types are normally defined in an RDF Schema.

54

An Abbreviation for rdf:type

• The rdf:Description element is replaced as follows:
<exterms:Tent rdf:ID="item10245">

<exterms:model>Overnighter</exterms:model>
<exterms:sleeps>2</exterms:sleeps>
<exterms:weight>2.4</exterms:weight>
<exterms:packedSize>14x56</exterms:packedSize>

</exterms:Tent>
• More like plain XML. More readable.
• If object has more that one type, add

<rdf:type …> statements as needed.

55

4. Other RDF Capabilities

• Containers
• Collections
• Reification
• Structured Values

56

4.1 RDF Containers

• We need to describe groups of things:
– a book created by several authors,
– a list of students in a course.

• RDF's container vocabulary consists of
bags, sequences, and alternative and
some associated properties.

57

Bag (rdf:Bag)

• A Bag is a resource having type rdf:Bag.
• A Bag is a unordered group of resources or

literals, possibly including duplicate members.
• For example, a Bag might model a group of

part numbers used in assembling a motor.
There might be duplicates (same part types
used many times) and order doesn't matter.

58

Sequence (rdf:Seq)

• A Sequence is a resource having type rdf:Seq.
• A Sequence is a group of resources or

literals, possibly including duplicate members,
where the order of the members is significant.

• For example, a Sequence might be used to
describe a group that must be maintained in
alphabetical order.

59

Alternative (rdf:Alt)

• An Alternative is a resource having type rdf:Alt.
• An Alternative is a group of resources or

literals that are alternatives (typically for a
single value of a property).

• For example, an Alt might be used to describe
a list of alternative Internet sites at which a
resource might be found.

60

Using Containers

• Give the resource an rdf:type property with
value rdf:Bag, rdf:Seq, or rdf:Alt

• The container resource (which may either be
a blank node or a resource with a URIref)
denotes the group as a whole.

• The members of the container use a
container membership with names of the form
rdf:_n, where n > 0, e.g., rdf:_1, rdf_2, rdf_3

61

A Bag Example
• Let’s represent the sentence: "Course 6.001 has the

students Amy, Mohamed, Johann, Maria, and Phuong."

• There is no significance in the student order.

62

RDF/XML Syntax For this Graph
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:s="http://example.edu/students/vocab#">

<rdf:Description rdf:about="http://example.edu/courses/6.001">
<s:students>

<rdf:Bag>
<rdf:li rdf:resource="http://example.edu/students/Amy"/>
<rdf:li rdf:resource="http://example.edu/students/Mohamed"/>
<rdf:li rdf:resource="http://example.edu/students/Johann"/>
<rdf:li rdf:resource="http://example.edu/students/Maria"/>
<rdf:li rdf:resource="http://example.edu/students/Phuong"/>

</rdf:Bag>
</s:students>

</rdf:Description>
</rdf:RDF>

63

Some Abbreviations
• RDF/XML provides li as a convenience to avoid

having to number each membership property.
– The numbered properties rdf:_1, rdf:_2, etc. are generated from the

li elements in forming the corresponding graph.
• The use of a <rdf:Bag> element within the <s:students>

property element.
– The <rdf:Bag> element is abbreviation that lets us replace both an

rdf:Description element and an rdf:type element with a single
element.

– The Bag is a blank node. Its nesting within the <s:students>
property element is an abbreviated way of indicating it is the value
of this property.

64

Sequences and Graph Structure

• The graph structure for an rdf:Seq container,
and the corresponding RDF/XML, are similar
to those for an rdf:Bag.

• The only difference is in the type, rdf:Seq.
• Remember, although an rdf:Seq container is

intended to describe a sequence, it is up to
applications creating and processing the
graph to appropriately interpret the sequence
of integer-valued property names.

65

Alternatives and Graph Structure

• The graph structure for an rdf:Alt container,
and the corresponding RDF/XML, are similar
to those for an rdf:Bag.

• An Alt container has at least one member,
rdf:_1, which is the default value.

• Other than rdf:_1, the order of the remaining
elements is not significant.

66

A Modeling Issue (example 1)
• Consider the sentence: “Sue has written

Anthology of Time, Zoological Reasoning,
and Gravitational Reflections.” It could be:

exstaff:Sue exterms:publication ex:AnthologyOfTime .
exstaff:Sue exterms:publication ex:ZoologicalReasoning .
exstaff:Sue exterms:publication ex:GravitationalReflections .

• Or, this model perhaps:
exstaff:Sue exterms:publication _:z
_:z rdf:type rdf:Bag .
_:z rdf:_1 ex:AnthologyOfTime .
_:z rdf:_2 ex:ZoologicalReasoning .
_:z rdf:_3 ex:GravitationalReflections .

67

A Modeling Issue (example 2)
• Now, consider: “The resolution was approved

by the Rules Committee, having members
Fred, Wilma, and Dino.” The following is wrong:

ex:resolution exterms:approvedBy ex:Fred .
ex:resolution exterms:approvedBy ex:Wilma .
ex:resolution exterms:approvedBy ex:Dino .

• since these statements say that each member
individually approved the resolution. Correct is:

ex:resolution exterms:approvedBy ex:rulesCommittee
ex:rulesCommittee rdf:type rdf:Bag .
ex:rulesCommittee rdf:_1 ex:Fred .
ex:rulesCommittee rdf:_2 ex:Wilma .
ex:rulesCommittee rdf:_3 ex:Dino .

68

4.2 RDF Collections
• With containers there is no way to say that

these are all the members of the container.
• The graph has no way to exclude the possibility

that there is another graph somewhere that
describes additional members.

• RDF collections can describe "closed" groups.
• An RDF collection is a LISP-like list of type

rdf:List, with predefined properties rdf:first and
rdf:rest, and the predefined resource rdf:nil.

69

A Collection Example
• Consider the sentence "The students in course 6.001 are Amy,

Mohamed, and Johann":

70

RDF/XML for The Collection of
Students (notice abbreviations)

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://example.edu/students/vocab#">

<rdf:Description rdf:about="http://example.edu/courses/6.001">
<s:students rdf:parseType="Collection">

<rdf:Description rdf:about="http://example.edu/students/Amy"/>
<rdf:Description rdf:about="http://example.edu/students/Mohamed"/>
<rdf:Description rdf:about="http://example.edu/students/Johann"/>

</s:students>
</rdf:Description>

</rdf:RDF>

71

4.3 Reification in RDF – Making
Statements about Statements

• Suppose we have the triple:
exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

• Now suppose we want to model that John Smith
made this statement.

• We want something like:
[exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .]

dc:creator exstaff:85740 .

• That is, to turn the original statement into a
resource, i.e., reify it, so it can be a Subject.

72

RDF Reification Vocabulary
• RDF supplies:

– a type: rdf:Statement,
– and properties: rdf:subject, rdf:predicate, rdf:object.

• So, a reification of our original triple:
exproducts:item10245 exterms:weight "2.4" .

• is given by the triples:
exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245
. exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .

• And we can add:
exproducts:triple12345 dc:creator exstaff:85740 .

to represent that 85740 made the statement.

73

Be Careful!!
• The above means that triple12345 refers to is a

particular instance of a triple in a particular RDF
document, rather than some arbitrary triple
having the same subject, predicate, and object.

• Suppose Jane Doe “also” said that item10245
weighed 2.4.

• How would you model it?
• With the same statement, triple12345 , or with

another statement, say triple7890, that has the
same subject, predicate, and object?

74

The Reified Statement is not the
Same as the Statement!

• When someone asserts that John said foo, they are
not asserting foo themselves, just that John said it.

• Conversely, when someone asserts foo, they are not
also asserting its reification.

• RDF can't "connect" an triple to its reification.
• triple12345 has NO graph connection to the original

triple:
exproducts:item10245 exterms:weight "2.4" .

• And adding: triple12345 dc:creator exstaff:85740 .
does not allow you to say that John created the
original triple.

75

Be Careful (cont.)

• We could attribute the statement to John
simply by the statement:

ex:triple12345 dc:creator exstaff:85740 .

• Now, if Jane were exstaff:900 and you
asserted:

ex:triple12345 dc:creator exstaff:900 .

• You would be saying that John and Jane
made the SAME statement. Is that likely? For
AI’ers to argue.

76

4.4 More on Structured Values: rdf:value

• We used blank nodes to turn n-ary properties
into binary ones (like the address example).

• Often the blank node has one property which
is its value. In our tent example, we said

exproduct:item10245 exterms:weight "2.4"^^xsd:decimal .

• A better description would include a “units”
property, with 2.4 being the “value.” Perhaps:

exproduct:item10245 exterms:weight _:weight10245 .
_:weight10245 rdf:value "2.4"^^xsd:decimal .
_:weight10245 exterms:units exunits:kilograms .

77

Structured Values In RDF/XML
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY xsd
"http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:exterms="http://www.example.org/terms/">

<rdf:Description
rdf:about="http://www.example.com/2002/04/products#item10245">
<exterms:weight rdf:parseType="Resource">
<rdf:value rdf:datatype="&xsd;decimal">2.4</rdf:value>
<exterms:units rdf:resource="http://www.example.org/units/kilograms" />

</exterms:weight>
</rdf:Description>

</rdf:RDF>

• You could assign your own property name, such
as ex:amount, instead of rdf:value.

78

4.5 XML Literals

• Sometimes the value of a property needs to
be a fragment of XML, or text that might
contain XML markup.

• Giving an element the attribute
rdf:parseType="Literal" indicates that
the contents of the element are to be
interpreted as an XML fragment.

79

RDF/XML Fragment using an
XML Literal

<rdf:Description
rdf:ID="book12345">

<dc:title rdf:parseType="Literal">

The

Element Considered Harmful.

</dc:title>

</rdf:Description>

80

5. Defining RDF Vocabularies:
RDF Schema

• RDF Schema provides a way to express:
– simple statements defining classes of

resources including subclass relationships,
– statements defining properties including

subclass relationships,
– statements about domain and range of a

property.

81

RDF Schema: A meta-language
• RDF Schema's type system is similar to those of

object-oriented programming languages.
• RDF Schema allows resources to be defined as

instances of one or more classes.
• Classes can be organized in a hierarchical fashion;

for example a class ex:Dog might be defined as a
subclass of ex:Mammal, meaning that any resource
which is in class ex:Dog is also in class ex:Mammal.

• The RDF Schema (RDFS:) is defined in a
namespace whose URI is:
http://www.w3.org/2000/01/rdf-schema#".

82

5.1 Describing Classes:
A MotorVehicle class

• To say that ex:MotorVehicle is a class, write:
ex:MotorVehicle rdf:type rdfs:Class .

• To create an instance of ex:MotorVehicle, write:
exthings:companyCar rdf:type ex:MotorVehicle .

• Convention:
– class names start with an uppercase letter;
– property and instance names are lowercase.

• A resource may be an instance of more than
one class.

83

Defining Subclasses
• We can now define specialized kinds of motor

vehicles, e.g., passenger vehicles, vans,
minivans, and so on.

ex:Van rdf:type rdfs:Class .
ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:Truck rdf:type rdfs:Class .
ex:Truck rdfs:subClassOf ex:MotorVehicle .

84

Meaning of Subclass
• subClassOf means if ex:myVan is an instance

of ex:Van, then ex:myVan is also, by inference,
an instance of ex:MotorVehicle.

• subClassOf is (obviously) transitive:
– If ex:Van rdfs:subClassOf ex:MotorVehicle .
– and ex:MiniVan rdfs:subClassOf ex:Van .
– then ex:MiniVan is implicitly a subclass of ex:MotorVehicle.

• A class may be a subclass of more than one
class. All classes are implicitly subclasses of
class rdfs:Resource.

85

A Full Class Hierarchy

• The (ex:Truck rdf:type rdfs:Class) part of the graph is not shown.
• Notice Minivan is subClassOf two classes.

(next slide as well)

86

Vehicle Hierarchy in RDF/XML
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description rdf:ID="MotorVehicle">
<rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdf:Description>

<rdfs:Class rdf:ID="PassengerVehicle">
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdfs:Class>
...
<rdfs:Class rdf:ID="MiniVan">

<rdfs:subClassOf rdf:resource="#Van"/>
<rdfs:subClassOf rdf:resource="#PassengerVehicle"/>

</rdfs:Class >
</rdf:RDF>

87

Class Naming
• Fragment identifiers, like MotorVehicle, use

rdf:ID give the effect of "assigning" URIrefs
relative to the schema document.

• Relative URIrefs based on these names can
then be used in other class definitions within
the same schema, e.g., #MotorVehicle.

• The full URIref of this class would be:
http://example.org/schemas/vehicles#MotorVehicle

• We could also include an explicit declaration:
xml:base="http://example.org/schemas/vehicles"

88

Creating Instances of ex:MotorVehicle
(notice both methods)

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex="http://example.org/schemas/vehicles">

<rdf:Description rdf:ID="companyCar">
<rdf:type rdf:resource="http://example.org/schemas/vehicles#MotorVehicle"/>

</rdf:Description>
<ex:MotorVehicle rdf:ID="anotherCar">

…
</ex:MotorVehicle>

</rdf:RDF>

89

5.2 Describing Properties

• All properties in RDF are described as
instances of class rdf:Property, e.g.

exterms:weightInKg rdf:type rdf:Property .

• RDF Schema provides rdfs:range to
define valid fillers for a triple’s Object.

• RDF Schema provides rdfs:domain to
define valid fillers for a triple’s Subject.

90

The rdfs:range Property
• If the property ex:author has values that are instances

of class ex:Person, we would write:
ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:range ex:Person .

• If a property has more than one range, then its filler
must be an instance of all of the classes specified as
the ranges:

ex:hasMother rdf:type rdf:Property .
ex:hasMother rdfs:range ex:Person .
ex:hasMother rdfs:range ex:Female .
ex:Sally ex:HasMother exstaff:frances

• exstaff:frances must be both a Female and a Person.

91

Typed Literals As Ranges

• To say that the range of ex:age is an integer:
ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .

• The datatype xsd:integer is identified by its
URIref (http://www.w3.org/2001/XMLSchema#integer).

• It is optional, but “useful” to declare:
xsd:integer rdf:type rdfs:Datatype .

• This statement documents the existence of
the datatype, and indicates explicitly that it is
being used in this schema.

92

The RDF rdfs:domain Property

• rdfs:domain indicates that a particular
property applies to a class.

• Suppose books have authors. In RDF:
ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

• If a property has more than one domain, then
any subject instance of that property must be
an instance of each named domain.

93

Some of the RDF/XMLVehicle Schema

<rdf:Description rdf:ID="registeredTo">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
<rdfs:domain rdf:resource="#MotorVehicle"/>
<rdfs:range rdf:resource="#Person"/>

</rdf:Description>

<rdf:Property rdf:ID="rearSeatLegRoom">
<rdfs:domain rdf:resource="#PassengerVehicle"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

</rdf:Property>

<rdfs:Class rdf:ID="Person" />

94

Specializing Properties
• Like rdfs:subClassOf, we have rdfs:subPropertyOf to

define a property hierarchy.
• For example, to say that the property

ex:primaryDriver is a kind of ex:driver, write:
ex:driver rdf:type rdf:Property .
ex:primaryDriver rdf:type rdf:Property .
ex:primaryDriver rdfs:subPropertyOf ex:driver .

• This means that if an instance ex:fred is a
ex:primaryDriver of the instance ex:companyVan,
then ex:fred is also a ex:driver of ex:companyVan.

95

More About Subproperties

• A property may be a subPropertyOf zero, one
or more properties.

• All RDF rdfs:range and rdfs:domain properties that
apply to an RDF property also apply to each
of its subproperties.

• So, ex:primaryDriver, because of its subproperty
relationship to ex:driver, implicitly also has an
rdfs:domain of ex:MotorVehicle.

96

In RDF/XML
<rdf:Description rdf:ID="driver">
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-

rdf-syntax-ns#Property"/>
<rdfs:domain rdf:resource="#MotorVehicle"/>

</rdf:Description>

<rdf:Property rdf:ID="primaryDriver">
<rdfs:subPropertyOf rdf:resource="#driver"/>

</rdf:Property>

97

An Instance of ex:PassengerVehicle

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ex="http://example.org/schemas/vehicles">

<rdf:Description rdf:ID="johnSmithsCar">
<rdf:type rdf:resource="http://example.org/schemas/vehicles#PassengerVehicle"/>
<ex:registeredTo rdf:resource="http://www.example.org/staffid/85740"/>
<ex:rearSeatLegRoom rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">

127</ex:rearSeatLegRoom>
<ex:primaryDriver rdf:resource="http://www.example.org/staffid/85740"/>

</rdf:Description>
</rdf:RDF>

98

Some Details Worth Reviewing
• We assumed this instance was in a separate

document from the schema
http://example.org/schemas/vehicles.

• Using the namespace:
xmlns:ex="http://example.org/schemas/vehicles"
allows us abbreviations such as ex:registeredTo.

• However, in a rdf:type property, use the full URIref and
not a QName using the ex: prefix.

• Remember this abbreviation?
<ex:PassengerVehicle rdf:ID="johnSmithsCar">

...
</ex:PassengerVehicle>

99

5.3 Interpreting RDF Schema
Declarations

• Schemas are not prescriptive like
programming language class definitions.
– A Java class Book with an author attribute having

values of type Person is usually interpreted as a
group of constraints.

– An instance of Book will have an author attribute
that must be an object of class Person.

• Moreover, if author is the only attribute defined
for class Book, the language will not allow an
instance of Book to have other attributes.

100

Schema Usage is Application Dependent

• RDF Schema simply offers descriptions of resources,
but not rules about how these descriptions should be
used. Consider the property: (ex:author rdfs:range ex:Person)

• This property might be used in different ways:
– as a constraint template for RDF data being created as it might be

in a programming language;
– as meta information to help decode untyped data it is receiving.

(ex:author data must be a ex:Person.);
– as meta information to validate some received data. If the object of

an ex:author property is also an instance of ex:Corporation
something is wrong;

– and, finally, another application may not care that instance of
ex:Book has no ex:author property.

101

5.4 Other Schema Information

• RDF Schema also provides documentation
properties:
– rdfs:comment for the obvious use.
– rdfs:label to provide a more human-readable version of a

resource's name.
– rdfs:seeAlso to indicate a resource that might provide

additional information about the subject resource.
– rdfs:isDefinedBy property is a subproperty of rdfs:seeAlso

102

5.5 Richer Schema Languages

• RDF Schema is missing some capabilities:
– cardinality constraints on properties, e.g., that a Person

has exactly one biological father.
– specifying that a given property (such as hasAncestor)

is transitive, e.g., that if A hasAncestor B, and B
hasAncestor C, then A hasAncestor C.

– specifying that a given property is a unique identifier
(or key) for instances of a particular class.

– specifying that two different classes (having different
URIrefs) actually represent the same concept.

103

Richer Schema Languages (cont.)
– specifying that two different instances (having different

URIrefs) actually represent the same individual.
– to describe new classes in terms of combinations (e.g.,

unions and intersections) of other classes,
– to say that two classes are disjoint (i.e., that no resource

is an instance of both classes).
• These and more are the targets of ontology

languages such as DAML+OIL and OWL.
• Both are based on RDF and RDF Schema.
• The development of such languages is a part of the

Semantic Web effort.

104

6. Some RDF Applications
• Dublin Core Metadata Initiative

– The Dublin Core is a set of "elements" (properties) for
describing documents (and hence, for recording metadata).

• PRISM
– Publishers want to (re)use existing content in many ways.

Converting magazine articles to HTML for posting on the
web is one example, reusing parts is another.

• XPackage
– To maintain information about structured groupings of

resources and their associations that are, or may be, used
as a unit. The XML Package (XPackage) specification
provides a framework for defining such groupings.

105

Some More RDF Applications
• RSS 1.0: RDF Site Summary

– RSS 1.0 is a powerful and extensible way of describing, managing
and making available to broad audiences relevant and timely news
information.

• CIM/XML
– A set of common definitions of power system entities. The Electric

Power Research Institute (EPRI) developed a Common Information
Model (CIM).

• Gene Ontology Consortium
– The objective of the Gene Ontology (GO) Consortium is to provide

controlled vocabularies to describe specific aspects of gene
products.

• Describing Device Capabilities and User Preferences
– The W3C's Composite Capabilities/Preferences Profile (CC/PP)

specification defined a generic framework for describing a delivery
context for mobile devices.

106

7. Other Parts of the RDF Specification

• RDF Semantics
– RDF statements also have a formal meaning

which determines the conclusions (or
entailments) that machines can draw from an
RDF graph.

– The RDF Semantics defines this formal meaning,
using a technique called model theory.

107

Other Parts of the RDF Specification

• Test Cases
– Positive and Negative Parser Tests: These test whether RDF/XML

parsers produce a correct N-triples output graph from legal
RDF/XML input documents, or correctly report errors if the input
documents are not legal RDF/XML.

– Positive and Negative Entailment Tests: These test whether proper
entailments (conclusions) are or are not drawn from sets of
specified RDF statements.

– Datatype-aware Entailment Tests: These are positive or negative
entailment tests that involve the use of datatypes, and hence
require additional support for the specific datatypes involved in the
tests.

– Miscellaneous Tests: These are tests that do not fall into one of the
other categories.

108

Appendix A – More about URIs

109

URI Schemes
• Different URI schemes already exist:

– http: (Hypertext Transfer Protocol for Web pages)
– mailto: (email addresses), e.g., mailto:em@w3.org
– ftp: (File Transfer Protocol)

• urn: Uniform Resource Names are persistent
location-independent resource identifiers, e.g.,
urn:isbn:0-520-02356-0 (for a book)

• No one person or organization controls who
makes URIs or how they can be used.

• URIs are defined in RFC 2396

110

Who controls URIs?

• No one person or organization controls who
makes URIs or how they can be used.

• Some URI schemes, such as URL's http domain
name, depend on centralized systems such as
DNS, others, such as freenet:, are decentralized.

• This means that, as with any other kind of name,
you don't need special authority to create a URI
for something, even if you don’t own it.

111

Relative and Absolute URIrefs
• An absolute URIref refers to a resource

independently of the context in which the URIref
appears, e.g., the URIref
http://www.example.org/index.html.

• A relative URIref has its prefix come from context
– otherpage.html has the absolute URIref

http://www.example.org/otherpage.html.
– #section2 is equivalent to the absolute URIref

http://www.example.org/index.html#section2.

112

URIs and Retrievability

• RDF use URIrefs to identify things.
• Web browsers may use URIrefs to retrieve things.
• However, a URIref may identify something, such

as a person, that cannot be retrieved on the web.
• There a convention that a page containing

descriptive information about a resource is
retrievable "at" its URI.

113

Browsers and Fragment
Identifiers

• Browsers handle fragment identifiers differently.
• Fragment identifiers in HTML documents identify

a specific place within the document.
– http://www.example.org/index.html
– http://www.example.org/index.html#Section2

• As far as RDF is concerned, these two URI
references are syntactically different, and hence
may refer to unrelated things.

