Midterm format

e Date: 10/09/2003 from 11:00am —12:20 pm
e Location: disclosed in class

e Credits: 35% of overall grade

e Approx. 4 problems, several questions in each.

e Material: everything so far.

e« Not a multiple choice exam

e No books (or other material) are allowed.

e Duration will be 1:20 hours.

e Academic Integrity code: see class main page.

CS 561, Session 12-13

Last time: Logic and Reasoning

e Knowledge Base (KB): contains a set of sentences expressed using a
knowledge representation language

e TELL: operator to add a sentence to the KB
e ASK: to query the KB
e Logics are KRLs where conclusions can be drawn
e Syntax
e Semantics
e« Entailment: KB |= a iff a is true in all worlds where KB is true

e Inference: KB |-j a = sentence a can be derived from KB using
procedure i

e Sound: whenever KB |-j a then KB |= a is true

e Complete: whenever KB |= a then KB |- a

CS 561, Session 12-13 2

Last Time: Syntax of propositional logic

Propositional logic is the simplest logic—illustrates ba
The proposition symbols #, /% etc are sentences

If S is a sentence, -5 is a sentence

If 57 and 8 is a sentence, 51 A Sy is a sentence

If 51 and S, is a sentence, 51V Sy is a sentence

If 57 and 8y is a sentence, S7 = Sy is a sentence

If 57 and 55 is a sentence, 57 < Sy is a sentence

CS 561, Session 12-13

Last Time: Semantics of Propositional logic

Each model specifies true/false for each proposition symbol

Eg A B C
True True False

Rules for evaluating truth with respect to a model m:

=S5 is true iff S is false
51 A 89 is true iff S Is true and Sy IS true
51V 89 is true iff S IS true or Sy 1S true
51 = 8y is true iff 59 is false or Sy is true
l.e., is false iff 59 is true and So is false
ST & Sy istrue iff 51 = Sy istrue and Sy = 57 is true

CS 561, Session 12-13

Last Time: Inference rules for propositional logic

{$ Modus Ponens or Implication-Elimination: (From an implication and the
premise of the implication, you can infer the conclusion.)
a = 9, a
Ié;
¢ And-Elimination: (From a conjunction, you can infer any of the conjuncts.)
ap Naa AN ay,

oy

{> And-Introduction: (From a list of sentences, you can infer their conjunction.)
p, (Y7, ey Xy
SR AN S S AN ANs
& Or-Introduction: (From a sentence, you can infer its disjunction with anything
else at all.)

(x;
ayVar V... Vo,
¢> Double-Negation Elimination: (From a doubly negated sentence, you can infer
a positive sentence.)

(&l
¢> Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you
can infer the other one is true.)
aV 3, -/
—
¢ Resolution: (This is the most difficult. Because /3 cannot be both true and false,
one of the other disjuncts must be true in one of the premises. Or equivalently,
implication is transitive.)

oV 3, 3V . - = 1, 3= v
- or equivalently
aV 7 Yy = g

This time

e First-order logic
e Syntax
e Semantics
e Wumpus world example

e Ontology (ont = ‘to be’; logica = ‘word’): kinds of things one
can talk about in the language

CS 561, Session 12-13

Why first-order logic?

e We saw that propositional logic is limited because it only
makes the ontological commitment that the world
consists of facts.

e Difficult to represent even simple worlds like the
Wumpus world;

e.g.,
“don’t go forward if the Wumpus is in front of you”
takes 64 rules

CS 561, Session 12-13 7

First-order logic (FOL)

e Ontological commitments:
e Objects: wheel, door, body, engine, seat, car, passenger, driver
 Relations: Inside(car, passenger), Beside(driver, passenger)
e Functions: ColorOf(car)

e Properties: Color(car), IsOpen(door), IsOn(engine)

e Functions are relations with single value for each object

CS 561, Session 12-13 8

Semantics

there Is a correspondence between
e functions, which return values
e predicates, which are true or false

Function: father_of(Mary) = BiIll
Predicate: father_of(Mary, Bill)

CS 561, Session 12-13

Examples:

e “One plus two equals three”
Objects:
Relations:
Properties:
Functions:

e “Squares neighboring the Wumpus are smelly”
Objects:
Relations:
Properties:
Functions:

CS 561, Session 12-13

10

Examples:

e “One plus two equals three”

Objects: one, two, three, one plus two
Relations: equals
Properties: --

Functions: plus (“one plus two” is the name of the object
obtained by applying function plus to one and two;

three is another name for this object)
e “Sqguares neighboring the Wumpus are smelly”
Objects: Wumpus, square
Relations: neighboring
Properties: smelly
Functions:

CS 561, Session 12-13

11

FOL: Syntax of basic elements

Constant symbols: 1, 5, A, B, USC, JPL, Alex, Manos, ...
Predicate symbols: >, Friend, Student, Colleague, ...
Function symbols: +, sqrt, SchoolOf, TeacherOf, ClassOf, ...

Variables: x, y, z, next, first, last, ...
Connectives: A, VvV, =, &
Quantifiers: V, 4

Equality: =

CS 561, Session 12-13 12

Syntax of Predicate Logic

e Symbol set
e constants
e Boolean connectives
e variables
e functions
e predicates (relations)
e quantifiers

CS 561, Session 12-13

Syntax of Predicate Logic

e Terms: a reference to an object
e variables,
e constants,

e functional expressions (can be arguments to
predicates)

e Examples:
 first([a,b,c]), sq_root(9), sq_root(n), tail([a,b,c])

CS 561, Session 12-13

14

Syntax of Predicate Logic

e Sentences: make claims about objects
e (Well-formed formulas, (wffs))

e Atomic Sentences (predicate expressions)
 loves(John,Mary), brother_of(John,Ted)

e Complex Sentences (Atomic Sentences
connected by booleans):

e loves(John,Mary)
e brother_of(John,Ted)
e teases(Ted, John)

CS 561, Session 12-13

15

Examples of Terms: Constants, Variables and Functions

e Constants: object constants refer to individuals
e Alan, Sam, R225, R216

e Variables
e PersonX, PersonY, RoomS, RoomT

e Functions
e father_of(PersonX)
e product_of(Numberl,Number2)

CS 561, Session 12-13 16

Examples of Predicates and Quantifiers

e Predicates
e in(Alan,R225)
e partOf(R225,Pender)
e fatherOf(PersonX,PersonY)

e Quantifiers
e All dogs are mammals.
e Some birds can't fly.
e 3 birds can’t fly.

CS 561, Session 12-13

17

Semantics

e Referring to individuals
e Jackie
e son-of(Jackie), Sam

e Referring to states of the world
e person(Jackie), female(Jackie)
e mother(Sam, Jackie)

CS 561, Session 12-13

18

FOL: Atomic sentences
AtomicSentence — Predicate(Term, ...) | Term = Term
Term — Function(Term, ...) | Constant | Variable

e Examples:
e SchoolOf(Manos)
e Colleague(TeacherOf(Alex), TeacherOf(Manos))

> >((+xy), x)

CS 561, Session 12-13

19

FOL: Complex sentences

Sentence — AtomicSentence

Sentence Connective Sentence
Quantifier Variable, ... Sentence
— Sentence

(Sentence)

e Examples:
e SIAS2, S1VvS2, (S1AS2)vVS3, S1=S2, S1<S3

e Colleague(Paolo, Maja) = Colleague(Maja, Paolo)
Student(Alex, Paolo) = Teacher(Paolo, Alex)

CS 561, Session 12-13 20

Semantics of atomic sentences

e Sentences in FOL are interpreted with respect to a model
e Model contains objects and relations among them

e Terms: refer to objects (e.g., Door, Alex, StudentOf(Paolo))
e Constant symbols: refer to objects
e Predicate symbols: refer to relations
e Function symbols: refer to functional Relations

e An atomic sentence predicate(term;, ..., termy)is true iff
the relation referred to by predicate holds between the
objects referred to by term;, ..., term,

CS 561, Session 12-13 21

Example model

e Objects: John, James, Marry, Alex, Dan, Joe, Anne, Rich

e Relation: sets of tuples of objects
{<John, James>, <Marry, Alex>, <Marry, James>, ...}
{<Dan, Joe>, <Anne, Marry>, <Marry, Joe>, ...}

e E.Q.:
Parent relation -- {<John, James>, <Marry, Alex>, <Marry, James>}

then Parent(John, James) is true
Parent(John, Marry) is false

CS 561, Session 12-13 22

Quantifiers

e EXxpressing sentences about collections of objects
without enumeration (naming individuals)

e E.g., All Trojans are clever

Someone in the class is sleeping

e Universal quantification (for all): V

e Existential quantification (three exists): 3

CS 561, Session 12-13

23

Universal quantification (for all): V

Y <variables> <sentence=

e “Every one In the cs561 class is smart’
V x In(cs561, x) = Smart(x)

e VY P corresponds to the conjunction of
Instantiations of P

In(cs561, Manos) = Smart(Manos) A
In(cs561, Dan) = Smart(Dan) A

In(cs561, Clinton) = Smart(Clinton)

CS 561, Session 12-13

24

Universal quantification (for all): V

e = IS a natural connective to use with V

e Common mistake: to use A Iin conjunction with V
e.g: vV x In(cs561, x) A Smart(x)
means “every one is in ¢s561 and everyone is smart”

CS 561, Session 12-13

25

Existential quantification (there exists):

3 <variables> <sentence>

e “Someone In the cs561 class Is smart’™
1 x In(cs561, x) A Smart(x)

e 3 P corresponds to the disjunction of
Instantiations of P

In(cs561, Manos) A Smart(Manos) v
In(cs561, Dan) A Smart(Dan) v

In(cs561, Clinton) A Smart(Clinton)

CS 561, Session 12-13

26

Existential quantification (there exists):

e A IS a natural connective to use with 3

e Common mistake: to use = in conjunction with 3
e.g: 3 x In(cs561, x) = Smart(x)
IS true if there is anyone that is not in cs561!

(remember, false = true is valid).

CS 561, Session 12-13

27

Properties of quantifiers

Ve Vy isthesameasVy Vz (why?7?)
dz dy isthesameasdy dz (why??)
dax Vy is not the sameasVy dz

Jx Vy Loves(z,y)
“There is a person who loves everyone in the world” Not all by one

Vy dz Loves(z,y) person but

“Everyone in the world is loved by at least one person” each one at
least by one

Quantifier duality: each can be expressed using the other

Va Likes(z, IceCream) -dz - Likes(z, IceCream) Proof?

dx Likes(x, Broccoli) -V —Likes(x, Broccoli)
28

Proof

e |In general we want to prove:
V X P(X) <=> =3 x = P(X)

AV xPX) = a(—(V xP(X)) = (—~(P(x1) ~P(Xx2) ... N
P(xn))) = =~ (=P(x1) v =P(x2) v ... v =P(xn)))

d 3 x =P(x) = -P(x1) v aP(X2) v ... v =P(xn)

d =3 X =P(X) = =(=P(x1) v =P(x2) v ... v =P(Xxn))

CS 561, Session 12-13 29

Example sentences

e Brothers are siblings

e Sibling is transitive

One’s mother is one’s sibling’s mother

e A first cousin is a child of a parent’s sibling

CS 561, Session 12-13

30

Example sentences

e Brothers are siblings

V X,y Brother(x, y) = Sibling(x, y)
e Sibling is transitive

Vv X,Y, z Sibling(x, y) A Sibling(y, z) = Sibling(x, z)
e One’s mother is one’s sibling’s mother

¥ m, c Mother(m, c) A Sibling(c, d) = Mother(m, d)

e A first cousin is a child of a parent’s sibling

Vv ¢, d FirstCousin(c, d) <
3 p, ps Parent(p, d) A Sibling(p, ps) A Parent(ps, c)

CS 561, Session 12-13

31

Example sentences

e One’s mother is one’s sibling’s mother
Vv m, c,d Mother(m, c) A Sibling(c, d) = Mother(m, d)

e V c,d 3m Mother(m, ¢) A Sibling(c, d) = Mother(m, d)

Mother of

sibling

CS 561, Session 12-13 32

Translating English to FOL

e Every gardener likes the sun.
vV x gardener(x) => likes(x,Sun)

e You can fool some of the people all of the time.
1 x V t (person(x) ™ time(t)) => can-fool(x,t)

CS 561, Session 12-13 33

Translating English to FOL

e You can fool all of the people some of the time.

vV Xx 3 t (person(x) ™ time(t) =>
can-fool (X, t)

e All purple mushrooms are poisonous.
V X (mushroom(x) © purple(x)) =>
poisonous(Xx)

CS 561, Session 12-13

34

Translating English to FOL...

e No purple mushroom is poisonous.
(3 xX) purple(X) ™ mushroom(x) ™ poisonous(x)
or, equivalently,

(v X) (mushroom(x) ™ purple(x)) =>
spoisonous(Xx)

CS 561, Session 12-13 35

Translating English to FOL...

e There are exactly two purple mushrooms.
(G X))@ y) mushroom(x) ™ purple(x) ~

mushroom(y) » purple(y) ™ =-(x=y) ™ (v 2)
(mushroom(z) ™ purple(z)) => ((x=2) v (y=2))

e Deb Is not tall.

-tal 1 (Deb)

CS 561, Session 12-13 36

Translating English to FOL...

e Xis above Y if X Is on directly on top of Y or else there is a
pile of one or more other objects directly on top of one
another starting with X and ending with Y.

(v X)(v y) above(x,y) <=> (on(x,y) v (z 2)
(on(x,z) ™ above(z,y)))

CS 561, Session 12-13 37

Equality

termi = termsy Is true under a given interpretation
if and only if term; and terms refer to the same object

and Vx x(Sqrt(x), Sqrt(x)) = x are satisfiable

E.g., 2
2 1s valid

1
2

E.g., definition of (full) Sibling in terms of Parent:
Va,y Sibling(z,y) & [—(a=y)AIdm,f =(m=f)A
Parent(m, x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]

CS 561, Session 12-13 38

Higher-order logic?

e First-order logic allows us to quantify over objects (=
the first-order entities that exist in the world).

e Higher-order logic also allows quantification over
relations and functions.

e.g., “two objects are equal iff all properties applied to
them are equivalent”:

V Xy X=y) < (Vp, px) < py))

e Higher-order logics are more expressive than first-order;
however, so far we have little understanding on how to
effectively reason with sentences in higher-order logic. .,

Logical agents for the Wumpus world

Remember: generic knowledge-based agent:

function KB-AGENT(percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t})
action < AsK(KB, MAKE-ACTION-QQUERY (1))
TELL(K B, MAKE- ACTION- SENTENCE(action, t))
te—t 41

return action

1. TELL KB what was perceived
Uses a KRL to insert new sentences, representations of facts, into KB

2. ASK KB what to do.
Uses logical reasoning to examine actions and select best.

CS 561, Session 12-13

40

Using the FOL Knowledge Base

Suppose a wumpus-world agent is using an FOL KB
and perceives a smell and a breeze (but no glitter) at ¢t = 5:

TeELL{ K B, Percept(|Smell, Breeze, Nonel, 5))
ASk(KB,3a Action(a,5))

l.e., does the KB entail any particular actions at ¢{ = 57

Answer: Yes, {a/Shoot} < substitution (binding list)

. L Set of solutions
Given a sentence 5 and a substitution o,

So denotes the result of plugging ¢ into S; e.g.,
S = Smarter(x,y)

o= {z/Hillary,y/Bill}

So = Smarter(Hillary, Bill)

ASk(KB, S) returns some/all ¢ such that KB E So

Wumpus world, FOL Knowledge Base

"Perception”
Vb,g,t Percept([Smell, b, gl,t) = Smelt(t)
Vs,b,t Percept([s, b, Glitter],t) = AtGold(t)

Reflex: Vt AtGold(t) = Action(Grab,t)

Reflex with internal state: do we have the gold already?
Vi AtGold(t) A ~Holding(Gold,t) = Action(Grab,t)

Holding(Gold,t) cannot be observed
= keeping track of change is essential

Deducing hidden properties

Properties of locations:
Vi, t At{Agent,l,t) A Smelt(t) = Smelly(l)
Vit At{Agent,l,t) A Breeze(t) = Breezy(l)

Squares are breezy near a pit:

Diagnostic rule—infer cause from effect
Vy Breezyly) = dz Pit{x) A Adjacent(z,y)

Causal rule—infer effect from cause
Va,y Pit{z) A Adjacent(z,y) = Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
Yy Breezyly) < [z Pit{z) A Adjacent(z,y)]

Situation calculus

Facts hold in situations, rather than eternally
E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate

E.g., Now in Holding{(Gold, Now) denotes a situation

Situations are connected by the Result function

Result(a, 5) is the situation that results from doing a is s

[
o

/

[,

~_|
&
]
]
]
<8
By

Hﬂ\-\-""\-_
Q™
\"--. Forward

S5 14

[
=
o

B8 8 |/

[/ / /8

/=)

Describing actions

“Effect” axiom—describe changes due to action
Vs AtGold(s) = Holding(Gold, Result{(Grab, s))

“Frame” axiom—describe non-changes due to action
Vs HaveArrow(s) = HaveArrow(Result(Grab,s)) May result in

too many
frame axioms

Frame problem: find an elegant way to handle non-change
(a) representation—avoid frame axioms
(b) inference—avoid repeated “copy-overs” to keep track of state

Qualification problem: true descriptions of real actions require endless
caveats—what if gold is slippery or nailed down or ...

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, ...

Describing actions (cont’d)

Successor-state axioms solve the representational frame problem

Each axiom is “about” a predicate (not an action per se):
P true afterwards < [an action made P true

V P true already and no action made P false]

For holding the gold:
Va,s Holding(Gold, Result(a, s)) <
[{a=Grab A AtGold(s))
V (Holding(Gold, s) A a # Release)]

CS 561, Session 12-13 46

Planning

Initial condition in KB:
At(Agent, [1,1], Sp)
At(Gold, [1,2], So)

Query: ASK(K B,ds Holding{(Gold, s))
i.e., in what situation will | be holding the gold?

Answer: {3/ Result{Grab, Result{ Forward, Sp))}
i.e., go forward and then grab the gold

This assumes that the agent is interested in plans starting at Sy and
that Sy is the only situation described in the KB

CS 561, Session 12-13 47

Generating action sequences

Represent plans as action sequences [a1, as, . . ., a,]
PlanResult(p, 5) is the result of executing p in 3

Then the query ASkK(K B,dp Holding(Gold, Plan Result(n, Sp)))
has the solution {p/[Forward, Grab]}

Definition of PlanResult in terms of Result:
Vs PlanResult([],s) =s []=empty plan

Va,p,s PlanResult(|a|p|,s) = PlanResult(p, Result(a, s))

_ Recursively continue until it((]:get_s to emptal plan []
Planning systems are special-purpose reasoners designed to do this type

of inference more efficiently than a general-purpose reasoner

CS 561, Session 12-13 48

Summary

First-order logic:
— objects and relations are semantic primitives
— syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:
— conventions for describing actions and change in FOL
— can formulate planning as inference on a situation calculus KB

CS 561, Session 12-13 49

