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Last time: Problem-Solving

• Problem solving:
• Goal formulation 
• Problem formulation (states, operators) 
• Search for solution

• Problem formulation:
• Initial state
• ?
• ?
• ?

• Problem types:
• single state: accessible and deterministic environment
• multiple state: ?
• contingency: ?
• exploration: ?
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Last time: Problem-Solving

• Problem solving:
• Goal formulation 
• Problem formulation (states, operators) 
• Search for solution

• Problem formulation:
• Initial state
• Operators
• Goal test
• Path cost

• Problem types:
• single state: accessible and deterministic environment
• multiple state: inaccessible and deterministic environment
• contingency: inaccessible and nondeterministic environment
• exploration: unknown state-space
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Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by 
generating successors of explored states (expanding)
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Last time: Finding a solution

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Solution: is a sequence of operators that bring you from current state to the 
goal state

Basic idea: offline, systematic exploration of simulated state-space by 
generating successors of explored states (expanding)

Strategy: The search strategy is determined by the order in which the nodes 
are expanded.
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A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure
open � make-queue(make-node(initial-state[problem]))
closed � [empty]
loop do

if open is empty then return failure
currnode � Remove-Front(open)
if Goal-Test[problem] applied to State(currnode) then return currnode
children � Expand(currnode, Operators[problem])
while children not empty

[… see next slide …]
end
closed � Insert(closed, currnode)
open � Sort-By-PathCost(open)

end
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A Clean Robust Algorithm

[… see previous slide …]
children � Expand(currnode, Operators[problem])
while children not empty

child � Remove-Front(children)
if no node in open or closed has child’s state

open � Queuing-Fn(open, child)
else if there exists node in open that has child’s state

if PathCost(child) < PathCost(node)
open � Delete-Node(open, node)
open � Queuing-Fn(open, child)

else if there exists node in closed that has child’s state
if PathCost(child) < PathCost(node)

closed � Delete-Node(closed, node)
open � Queuing-Fn(open, child)

end
[… see previous slide …]
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Last time: search strategies

Uninformed: Use only information available in the problem formulation
• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening

Informed: Use heuristics to guide the search
• Best first
• A* 
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Evaluation of search strategies

• Search algorithms are commonly evaluated according to the following 
four criteria:
• Completeness: does it always find a solution if one exists?
• Time complexity: how long does it take as a function of number of nodes?
• Space complexity: how much memory does it require?
• Optimality: does it guarantee the least-cost solution?

• Time and space complexity are measured in terms of:
• b – max branching factor of the search tree
• d – depth of the least-cost solution
• m – max depth of the search tree (may be infinity)
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Last time: uninformed search strategies

Uninformed search:
Use only information available in the problem formulation
• Breadth-first
• Uniform-cost
• Depth-first
• Depth-limited
• Iterative deepening
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This time: informed search

Informed search:
Use heuristics to guide the search
• Best first
• A*
• Heuristics
• Hill-climbing
• Simulated annealing
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Best-first search

• Idea:
use an evaluation function for each node; estimate of 
“desirability”

�expand most desirable unexpanded node.

• Implementation:

QueueingFn = insert successors in decreasing order of 
desirability

• Special cases:
greedy search
A* search
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Romania with step costs in km

374

329

253
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Greedy search

• Estimation function:
h(n) = estimate of cost from n to goal (heuristic)

• For example:
hSLD(n) = straight-line distance from n to Bucharest

• Greedy search expands first the node that appears to be 
closest to the goal, according to h(n).
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Properties of Greedy Search

• Complete?

• Time?

• Space?

• Optimal?
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Properties of Greedy Search

• Complete? No – can get stuck in loops
e.g., Iasi > Neamt > Iasi > Neamt > …
Complete in finite space with repeated-state checking.

• Time? O(b^m) but a good heuristic can give
dramatic improvement

• Space? O(b^m) – keeps all nodes in memory

• Optimal? No.
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A* search

• Idea: avoid expanding paths that are already expensive

evaluation function: f(n) = g(n) + h(n) with:
g(n) – cost so far to reach n
h(n) – estimated cost to goal from n
f(n) – estimated total cost of path through n to goal

• A* search uses an admissible heuristic, that is,
h(n) ≤ h*(n) where h*(n) is the true cost from n.

For example: hSLD(n) never overestimates actual road distance.

• Theorem: A* search is optimal
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1

Optimality of A* (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the 
queue.  Let n be an unexpanded node on a shortest path to an 
optimal goal G1.
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Optimality of A* (more useful proof)
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f-contours

How do the contours look like when h(n) =0?
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Properties of A*

• Complete?

• Time?

• Space?

• Optimal?
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Properties of A*

• Complete? Yes, unless infinitely many nodes with f ≤ f(G)

• Time? Exponential in [(relative error in h) x (length of solution)]

• Space? Keeps all nodes in memory

• Optimal? Yes – cannot expand fi+1 until fi is finished
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Proof of lemma: pathmax
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Admissible heuristics
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Admissible heuristics
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Relaxed Problem

• Admissible heuristics can be derived from the exact 
solution cost of a relaxed version of the problem.

• If the rules of the 8-puzzle are relaxed so that a tile can 
move anywhere, then h1(n) gives the shortest solution.

• If the rules are relaxed so that a tile can move to any 
adjacent square, then h2(n) gives the shortest solution.
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Next time

• Iterative improvement
• Hill climbing
• Simulated annealing


