Last time: Problem-Solving

e Problem solving:
e Goal formulation
e Problem formulation (states, operators)
e Search for solution

e Problem formulation:

e |nitial state
e ?
e ?
e ?

e Problem types:

e single state: accessible and deterministic environment
e multiple state: ?
e contingency: ?
e exploration: ?

CS 561, Session 6

Last time: Problem-Solving

e Problem solving:
e Goal formulation
e Problem formulation (states, operators)
e Search for solution

e Problem formulation:
e |nitial state
e Operators
e Goal test
e Path cost

e Problem types:

e single state: accessible and deterministic environment
e multiple state: ?
e contingency: ?
e exploration: ?

CS 561, Session 6

Last time: Problem-Solving

e Problem solving:
e Goal formulation

e Problem formulation (states, operators)
e Search for solution

e Problem formulation:

e Problem types:

Initial state
Operators
Goal test
Path cost

single state:
multiple state:
contingency:
exploration:

accessible and deterministic environment
inaccessible and deterministic environment
inaccessible and nondeterministic environment
unknown state-space

CS 561, Session 6

Last time: Finding a solution

Solution: is ???

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do
If there are no candidates for expansion then return failure

choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution

else expand the node and add resulting nodes to the search tree

end

CS 561, Session 6

Last time: Finding a solution

Solution: is a sequence of operators that bring you from current state to the
goal state.

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding).

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do
If there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Strategy: The search strategy is determined by ?7?7?

CS 561, Session 6

Last time: Finding a solution

Solution: is asequence of operators that bring you from current state to the
god state

Basic idea: offline, systematic exploration of simulated state-space by
generating successors of explored states (expanding)

Function General-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state problem

loop do
If there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add resulting nodes to the search tree

end

Strategy: The search strategy is determined by the order in which the nodes
are expanded.

CS 561, Session 6

A Clean Robust Algorithm

Function UniformCost-Search(problem, Queuing-Fn) returns a solution, or failure
open €< make-queue(make-node(initial-state[problem]))
closed < [empty]
loop do
If open is empty then return failure
currnode < Remove-Front(open)
If Goal-Test[problem] applied to State(currnode) then return currnode
children € Expand(currnode, Operators[problem])
while children not empty

[... see next slide ...]
end
closed < Insert(closed, currnode)
open < Sort-By-PathCost(open)
end

CS 561, Session 6 7

A Clean Robust Algorithm

[... see previous slide ...]
children € Expand(currnode, Operators[problem])
while children not empty
child € Remove-Front(children)
If no node in open or closed has child’s state
open < Queuing-Fn(open, child)
else If there exists node in open that has child’s state
If PathCost(child) < PathCost(node)
open < Delete-Node(open, node)
open < Queuing-Fn(open, child)
else if there exists node in closed that has child’s state
If PathCost(child) < PathCost(node)
closed < Delete-Node(closed, node)
open < Queuing-Fn(open, child)
end
[... see previous slide ...] CS 561, Session 6

Last time: search strategies

Uninformed: Use only information available in the problem formulation
e Breadth-first
e Uniform-cost
e Depth-first
e Depth-limited
e lterative deepening

Informed: Use heuristics to guide the search
e Best first
e A*

CS 561, Session 6 o]

Evaluation of search strategies

e Search algorithms are commonly evaluated according to the following
four criteria:

e Completeness: does it always find a solution if one exists?

« Time complexity: how long does it take as a function of number of nodes?
e Space complexity: how much memory does it require?

e Optimality: does it guarantee the least-cost solution?

e Time and space complexity are measured in terms of:
e b — max branching factor of the search tree
e d — depth of the least-cost solution
e m —max depth of the search tree (may be infinity)

CS 561, Session 6 10

Last time: uninformed search strategies

Uninformed search:
Use only information available in the problem formulation
e Breadth-first
e Uniform-cost
e Depth-first
e Depth-limited
e Iterative deepening

CS 561, Session 6

11

This time: informed search

Informed search:

Use heuristics to guide the search
e Best first
e A*
e Heuristics
e Hill-climbing
e Simulated annealing

CS 561, Session 6

12

Best-first search

e |dea:
use an evaluation function for each node; estimate of
“desirability”

= eXxpand most desirable unexpanded node.

e Implementation:

QueueingFn = insert successors in decreasing order of
desirability

e Special cases:
greedy search

A* search
CS 561, Session 6 13

Romania with step costs in km

] Oradea
71
Meamt
|
[] .. - 87
75 ering
3 7 4 [| lasi
Arad
92
y Sibiu g9 Fagaras
. =
118 \.\] 1 Vaslui
Timisoara 253 R ('
) 142
11 : 5 B 211
70 = 98
85 Hirsova
:) Urziceni
] 86
73 138 Bucharest
Dobreta [L 90
Craiova Eforie
[] Giurgiu

CS 561, Session 6

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

14

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Greedy search

e Estimation function:
h(n) = estimate of cost from n to goal (heuristic)

e For example:
he, p(n) = straight-line distance from 77 to Bucharest

e Greedy search expands first the node that appears to be
closest to the goal, according to A(n).

CS 561, Session 6 15

s B Dicusssd Jods Wew Windes Help =18z
BHHOE WAy o+ DO &3 #ddd 1

H Greedy search example H

] TEiN '|!1|h|h|bll-|“ 11-'H:h|ﬁ|_1|
staet| o Tobont - pobecnde | a1 | aes sa _Jod | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | FY amem

Adols Aciobal - |aersrniil. pd]
L | Fde Ed Deouressd Tods deew lWwiedes Help =l81x
BHHOME WAy o+ DO &3 &&F 1

HEPDESD 0 gm 3=

] TEiN '|!1|ﬁ.|h|bll-|“ 11-'H:h|ﬂ|_'l
staet| o Tobont - pobecnde | a1 | aes sa _Jod | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | [FY 2msrm

ddules Sciobsl [aeramnlib. pdr]

| F PSR Docusssd Todls ew Windea Help =18z
MeaGHIBEWIrn «+ O0F 52 40 1

HEODEO =T/ gm 2T

] TEiN -|!1|-=-..=n|r||-|" 11.-|.-:.h|ﬁ|_i|
staet| o Tobont - pobecnde | a1 | aes sa _doxd | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | [FY 2msrm

ddules Sciobsl [aeramnlib. pdr]

| F PSR Docusssd Todls ew Windea Help
MeaGHIBEWIrn «+ O0F 52 40 1

HEODEO =T/ gm 2T

o IEP st Wi il il Peler Mioruig, 10

L e e [e IO 0 | e o B |
Stent| o] Pobnet - pobsime ot | 31 | s 51

COF <
a74. e

=2, @),

=7

366 380 ..o 178 193

ul

<>
253 0

-]

| Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop

Properties of Greedy Search

e Complete?

e Time?

e Space?

e Optimal?

CS 561, Session 6

20

Properties of Greedy Search

e Complete? No — can get stuck in loops
e.g., lasi > Neamt > lasi > Neamt > ...
Complete in finite space with repeated-state checking.

e Time? O(b”m) but a good heuristic can give
dramatic improvement

e Space? O(b”m) — keeps all nodes in memory

e Optimal? No.

CS 561, Session 6 21

A* search

e |dea: avoid expanding paths that are already expensive

evaluation function: 7(n) = g(n) + h(n) with:
g(n) — cost so far to reach n
h(n) — estimated cost to goal from n
f(n) — estimated total cost of path through » to goal

e A* search uses an admissible heuristic, that is,
h(n) < h*(n) where h*(n) is the true cost from n.

For example: A, (1) never overestimates actual road distance.

e Theorem: A* search is optimal

CS 561, Session 6 22

| F PSR Docusssd Todls ew Windea Help aliflx
BHHOE WAy o+ DO &3 #ddd 1

H A* search example H

AEPESD r=Wlgm 2H =

] P |1 | T | e e
staet| o Tobont - pobecnde | a1 | aes sa _Jod | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | [EY =1arm

| F PSR Docusssd Todls ew Windea Help =18z
MeaGHIBEWIrn «+ O0F 52 40 1

] TEiN -|!1| TTE"] Illl’l" 11 mEE™ |E| |;|
staet| o Tobont - pobecnde | a1 | aes sa _Jod | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | [FY 220pm

| F PSR Docusssd Todls ew Windea Help aliflx
BHHOE WAy o+ DO &3 #ddd 1

AEPESD r=Wlgm 2H =

] P | Y | T | e e
staet| o Tobont - pobecnde | a1 | aes sa _Jod | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | [EY 2nem

| F PSR Docusssd Todls ew Windea Help
BHHOE WAy o+ DO &3 #ddd 1

Fj<] 116

AEPESD r=Wlgm 2H =

140 15
646 526 41

] P | Y T 3 T | e e
staet| o Tobont - pobecnde | a1 | aes sa _Jod

e

&0
o

o

146) 80

SISO
526 415 553

| Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop

| B sam

S Pl E Docused Jods Wew

AEPESD r=Wlgm 2H =

weken Help

BHHOE WAy o+ DO &3 #ddd 1

B
-

AR
/#:*

ad,
¥
e

e,

)]

m ?

HI:I

-
41&

-;hﬂﬂmﬁwhmm

) ErEm V9 | e Ve

(=1 | aes sa _Jod

l\

g

&,,

I'I'Z.-I.-l
@

| Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop

| F PSR Docusssd Todls ew Windea Help aliflx
BHHOE WAy o+ DO &3 #ddd 1

HI:I

O H @17 mi;
©) ﬂ\ G
o8

AEPESD r=Wlgm 2H =

O - K1 IERTETN I L | S i W R
staet| o Tobont - pobecnde | a1 | aes sa _Jod | Adotee Acrabiat - fams... [5] bbcpsctt PosesPioms - |on | [Ao Photrsbop | [EY 2zem

Optimality of A* (standard proof)

Suppose some suboptimal goal G, has been generated and is in the
gueue. Let n be an unexpanded node on a shortest path to an

optimal goal G,. Start

G® G
f(Gs) = g(Gs) since h(Gs) =0
> g(Gy) since (G is suboptimal
> f(n) since h is admissible
Since f(Gy) > f(n), A* will never select G- for expansion

29

Optimality of A* (more useful proof)

Lemma: A" expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour ¢ has all nodes with f = f;, where f; < fii

f-contours

How do the contours look like when h(n) =07?

31

Properties of A*

e Complete?

e Time?

Space?

e Optimal?

CS 561, Session 6

32

Properties of A*

e Complete? Yes, unless infinitely many nodes with f < f(G)

e Time? Exponential in [(relative error in h) x (length of solution)]

Space? Keeps all nodes in memory

e Optimal? Yes — cannot expand f, until f, is finished

CS 561, Session 6 33

Proof of lemma: pathmax

For some admissible heuristics, f may decrease along a path

E.g., suppose n' is a successor of n

n g=5 h=4 =9

n’ g'=6 h'=2 f=8

But this throws away information!
f(n) =9 = true cost of a path through n is > 9
Hence true cost of a path through n' is > 9 also

Pathmax modification to A*:
Instead of f(n') = g(n') + h(n'), use f(n') = max(g(n')+ hin'), f(n))

With pathmax, f is always nondecreasing along any path

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
hs(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

S 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

CS 561, Session 6

Admissible heuristics

E.g., for the 8-puzzle:

hi(n) = number of misplaced tiles
hs(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5

Start State Coal State

hq(S) =777
ho(S) =77 24+343+2+4+24+0+2 = 18

CS 561, Session 6

Relaxed Problem

e Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem.

e |f the rules of the 8-puzzle are relaxed so that a tile can
move anywhere, then h,(n) gives the shortest solution.

e |f the rules are relaxed so that a tile can move to any
adjacent square, then h,(n) gives the shortest solution.

CS 561, Session 6 37

Next time

e [terative improvement
e Hill climbing
e Simulated annealing

CS 561, Session 6

38

