
CS 561, Sessions 14-15 1

Knowledge Representation

• Knowledge engineering: principles and pitfalls
• Ontologies
• Examples

CS 561, Sessions 14-15 2

Knowledge Engineer

• Populates KB with facts and relations

• Must study and understand domain to pick important objects
and relationships

• Main steps:
Decide what to talk about
Decide on vocabulary of predicates, functions & constants
Encode general knowledge about domain
Encode description of specific problem instance
Pose queries to inference procedure and get answers

CS 561, Sessions 14-15 3

Knowledge engineering vs. programming

Knowledge Engineering Programming

1. Choosing a logic Choosing programming language
2. Building knowledge base Writing program
3. Implementing proof theory Choosing/writing compiler
4. Inferring new facts Running program

Why knowledge engineering rather than programming?
Less work: just specify objects and relationships known to be true, but

leave it to the inference engine to figure out how to solve a problem
using the known facts.

CS 561, Sessions 14-15 4

Properties of good knowledge bases

• Expressive
• Concise
• Unambiguous
• Context-insensitive
• Effective
• Clear
• Correct
• …

Trade-offs: e.g., sacrifice some correctness if it enhances
brevity.

CS 561, Sessions 14-15 5

Efficiency

• Ideally: Not the knowledge engineer’s problem

The inference procedure should obtain same answers no
matter how knowledge is implemented.

• In practice:
- use automated optimization
- knowledge engineer should have some

understanding of how inference is done

CS 561, Sessions 14-15 6

Pitfall: design KB for human readers

• KB should be designed primarily for inference procedure!

• e.g.,VeryLongName predicates:

BearOfVerySmallBrain(Pooh) does not allow inference procedure to
infer that Pooh is a bear, an animal, or that he has a very small
brain, …

Rather, use:

Bear(Pooh)
∀ b, Bear(b) � Animal(b)
∀ a, Animal(a) �PhysicalThing(a)
…
[See AIMA pp. 220-221 for full example]

In other words:
BearOfVerySmallBrain(pooh) = x(pooh)

CS 561, Sessions 14-15 7

Debugging

• In principle, easier than debugging a program,

because we can look at each logic sentence in isolation and tell
whether it is correct.

Example:

∀ x, Animal(x) � ∃∃∃∃ b, BrainOf(x) = b
means

“there is some object that is the value of the BrainOf function
applied to an animal”

and can be corrected to mean
“every animal has a brain”

without looking at other sentences.

CS 561, Sessions 14-15 8

Ontology

• Collection of concepts and inter-relationships

• Widely used in the database community to “translate”
queries and concepts from one database to another, so
that multiple databases can be used conjointly
(database federation)

CS 561, Sessions 14-15 9

Ontology
Example

Kh
an

 &
 M

cL
eo

d,
 2

00
0

CS 561, Sessions 14-15 10

Towards a general ontology

Develop good representations for:

- categories
- measures
- composite objects
- time, space and change
- events and processes
- physical objects
- substances
- mental objects and beliefs
- …

CS 561, Sessions 14-15 11

Representing Categories

• We interact with individual objects, but…
much of reasoning takes place at the level of categories.

• Representing categories in FOL:
- use unary predicates

e.g., Tomato(x)

- reification: turn a predicate or function into an object
e.g., use constant symbol Tomatoes to refer to set of all tomatoes
“x is a tomato” expressed as “x∈ Tomatoes”

• Strong property of reification: can make assertions about reified
category itself rather than its members

e.g., Population(Humans) = 5e9

-in a table form (small set of objects)
-based on its properties

CS 561, Sessions 14-15 12

Categories: inheritance

• Allow to organize and simplify knowledge base

e.g., if all members of category Food are edible
and Fruits is a subclass of Food
and Apples is a subclass of Fruits
then we know (through inheritance) that apples are edible.

• Taxonomy: hierarchy of subclasses

• Because categories are sets, we handle them as such.
e.g., two categories are disjoint if they have no member in common

a disjoint exhaustive decomposition is called a partition
etc…

CS 561, Sessions 14-15 13

Example: Taxonomy of hand/arm movements

Hand/arm movement

Gestures Unintentional Movements

Manipulative Communicative

Acts Symbols

Mimetic Deictic Referential Modalizing

Quek,1994, 1995.

CS 561, Sessions 14-15 14

Measures

• Can be represented using units functions
e.g., Length(L1) = Inches(1.5) = Centimeters(3.81)

• Measures can be used to describe objects
e.g., Mass(Tomato12) = Kilograms(0.16)

• Caution: be careful to distinguish between measures and objects
e.g., ∀ b, b∈ DollarBills � CashValue(b) = $(1.00)

CS 561, Sessions 14-15 15

Composite Objects

• One object can be part of another.

• PartOf relation is transitive and reflexive:
e.g., PartOf(Bucharest, Romania)

PartOf(Romania, EasternEurope)
PartOf(EasternEurope, Europe)

Then we can infer Part Of(Bucharest, Europe)

• Composite object: any object that has parts

CS 561, Sessions 14-15 16

Composite Objects (cont.)

• Categories of composite objects often characterized by their
structure, i.e., what the parts are and how they relate.

e.g., ∀ a Biped(a) �
∃ ll, lr, b
Leg(ll) ∧ Leg(lr) ∧ Body(b) ∧
PartOf(ll, a) ∧ PartOf(lr, a) ∧ PartOf(b, a) ∧
Attached(ll, b) ∧ Attached(lr, b) ∧
ll ≠ lr ∧
∀ x Leg(x) ∧ PartOf(x, a) � (x = ll ∨ x = lr)

• Such description can be used to describe any objects, including
events. We then talk about schemas and scripts.

CS 561, Sessions 14-15 17

Events

• Chunks of spatio-temporal universe

e.g., consider the event WorldWarII
it has parts or sub-events: SubEvent(BattleOfBritain, WorldWarII)
it can be a sub-event: SubEvent(WorldWarII, TwentiethCentury)

• Intervals: events that include as sub-events all events occurring in
a given time period (thus they are temporal sections of the entire
spatial universe).

• Cf. situation calculus: fact true in particular situation
event calculus: event occurs during particular interval

CS 561, Sessions 14-15 18

Events (cont.)

• Places: spatial sections of the spatio-temporal universe that extend
through time

• Use In(x) to denote subevent relation between places; e.g.
In(NewYork, USA)

• Location function: maps an object to the smallest place that
contains it:

∀ x,l Location(x) = l ⇔ At(x, l) ∧ ∀ ll At(x, ll) � In(l, ll)

CS 561, Sessions 14-15 19

Times, Intervals and Actions

• Time intervals can be partitioned between moments (=zero
duration) and extended intervals:

• Absolute times can then be derived from defining a time scale (e.g.,
seconds since midnight GMT on Jan 1, 1900) and associating points
on that scale with events.

• The functions Start and End then pick the earliest and latest
moments in an interval. The function Duration gives the difference
between end and start times.

∀ i Interval(i) � Duration(i) = (Time(End(i) – Time(Start(i)))
Time(Start(AD1900)) = Seconds(0)
Time(Start(AD1991)) = Seconds(2871694800)
Time(End(AD1991)) = Seconds(2903230800)
Duration(AD1991) = Seconds(31536000)

CS 561, Sessions 14-15 20

Times, Intervals and Actions (cont.)

• Then we can define predicates on intervals such as:

∀ i, j Meet(i, j) ⇔ Time(End(i)) = Time(Start(j))
∀ i, j Before(i, j) ⇔ Time(End(i)) < Time(Start(j))
∀ i, j After(j, i) ⇔ Before(i ,j)
∀ i, j During(i, j) ⇔ Time(Start(j)) ≤ Time(Start(i)) ∧

Time(End(j)) ≥ Time(End(i))
∀ i, j Overlap(i, j) ⇔ ∃ k During(k, i) ∧ During(k, j)

CS 561, Sessions 14-15 21

Objects Revisited

• It is legitimate to describe many objects as events

• We can then use temporal and spatial sub-events to capture
changing properties of the objects

e.g.,
Poland event
19thCenturyPoland temporal sub-event
CentralPoland spatial sub-event

We call fluents objects that can change across situations.

CS 561, Sessions 14-15 22

Substances and Objects

• Some objects cannot be divided into distinct parts –
e.g., butter: one butter? no, some butter!

� butter substance (and similarly for temporal substances)
(simple rule for deciding what is a substance: if you cut it in half, you

should get the same).

How can we represent substances?

- Start with a category
e.g., ∀ x,y x ∈ Butter ∧ PartOf(y, x) � y ∈ Butter

- Then we can state properties
e.g., ∀ x Butter(x) � MeltingPoint(x, Centigrade(30))

CS 561, Sessions 14-15 23

Example: Activity Recognition

• Goal: use network of video cameras to monitor human activity

• Applications: surveillance, security, reactive environments

• Research: IRIS at USC

• Examples: two persons meet, one person follows another, one
person steals a bag, etc…

CS 561, Sessions 14-15 24

Human activity detection

• Nevatia/Medioni/Cohen

CS 561, Sessions 14-15 25

Low-level processing

CS 561, Sessions 14-15 26

Spatio-temporal representation

CS 561, Sessions 14-15 27

CS 561, Sessions 14-15 28

Modeling Events

CS 561, Sessions 14-15 29

Modeling Events

CS 561, Sessions 14-15 30

