Belief networks

e Conditional independence
e Syntax and semantics

e Exact inference

e Approximate inference
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Independence

Two random variables A B are (absolutely) independent iff
P(A|B) = P(A)
or P(A, B) = P(A|B)P(B) = P(A)P(B)
e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is
P(Xla ‘e :Xn) — H'EP(X'E-)
hence can be specified by just n numbers

Absolute independence is a very strong requirement, seldom met
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Conditional independence

Consider the dentist problem with three random variables:
Toothache, Cavity, Catch (steel probe catches in my tooth)

The full joint distribution has 2° — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

(1) P(Catch|Toothache, Cavity) = P(Catch|Cavity)
i.e., C'atch is conditionally independent of T'oothache given Cavity

The same independence holds if | haven't got a cavity:
(2) P(Catch|Toothache, ~Cavity) = P(Catch|-Cavity)
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Conditional independence

Equivalent statements to (1)

(1a) P(Toothache|Catch,Cavity) = P(Toothache|Cavity) Why??

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
Why??
Full joint distribution can now be written as

P(Toothache, Catch, Cavity) = P(Toothache, Catch|C avity)P(Cavity)

= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
l.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)
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Conditional independence

Equivalent statements to (1)
(1a) P(Toothache|Catch, Cavity) = P(Toothache|Cavity) Why??7

P(Toothache|Catch,Cavity)
= P(Catch|Toothache,Cavity)P(Toothache|Cavity)/P(Catch|Cavity)
= P(Catch|Cavity)P(Toothache|Cavity)/ P(Catch|Cavity) (from 1)
= P(Toothache|Cavity)

(1b) P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
Why??

P(Toothache,Catch|Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity) (product rule)
= P(Toothache|Cavity)P(Catch|Cavity) (from la)
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Belief networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable

a directed, acyclic graph (link = “directly influences”)
a conditional distribution for each node given its parents:

P (X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT)
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is there
a burglar?

Variables: Burglar, FEarthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:
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Note: < k parents = O(d*n) numbers vs. O(d")
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(Xla I Xﬂ) - H:L=1P(X!|P(IT€R?.18(X!))
eg., P(JAMANAA-BA-E) is given by??
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Semantics

“Global” semantics defines the full joint distribution as
the product of the local conditional distributions:

P(le e X‘H) — H:EL=1P(X'E'-|P&TERIL'S (Xf))

eg., P(JAMANAN-BA-FE) is given by??
= P(—-B)P(~E)P(A|-B A-E)P(J|A)P(M|A)

“Local” semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics <> global semantics

CS 561, Session 29



Markov blanket
e

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing belief networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables Xy,..., X,
2. Fori =1ton
add X; to the network
select parents from X;,..., X, ; such that
P(X;|Parents(X;)) = P(X;| Xy, ..., Xi—1)

This choice of parents guarantees the global semantics:
P(Xl, e ,Xn) = H.E;IP(X@'Xl, “uay X-g__l) (ChEIiI'I rule)
= II'_,P(X;|Parents(X;)) by construction
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Example
Suppose we choose the ordering M, J, A, B,

P(J|M) = P(J)?



No
P(A|J, M) = P(AlJ)? P(A|J, M) = P(A)?



\

Burglary

P(B|A,J, M) = P(B|A)?
P(B|A.J M) = P(B)?



Earthquake



No

Yes



Example: car diagnosis

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals)
Hidden variables (shaded ensure sparse structure, reduce parameters

battery
Croar ) G )Gt ) Gz D
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Example: car insurance

Predict claim costs (medical, liability, property)
given data on application form (other unshaded nodes)

<
.
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Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV USV Mexican

E.g., numerical relationships among continuous variables

0Level
ot

= inflow + precipation - outflow - evaporation
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Compact conditional distributions

Noisy-OR distributions model multiple noninteracting causes
1) Parents Uy ... Uy include all causes (can add leak node)
2) Independent failure probability ¢g; for each cause alone
= P(XlUlUJ,_' j+1 _lUgg) =1- H{=1Qe

Cold Flu Malaria| P(Fever)| P(—~Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=10.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents



Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harwvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete++continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?) -



Continuous child variables

Need one conditional density function for child variable given continuous

parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:
P(Cost =c|Harvest = h, Subsidy? = true)
= N(ath + by, 04)(c)
1 1(c— (ath+ b))
— Jt\/ﬁexp (—2( p J ]

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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Continuous child variables

HC‘H”HHEHL'? Subsidy T=true) P CostiHarvest, Subsidy T=fulse) P'I(.'(ﬂ;hll-_lurwm]
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All-continuous network with LG distributions
= full joint is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e.,
a multivariate Gaussian over all continuous variables for each combina-
tion of discrete variable values
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Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a “soft” threshold:
1 ' ' T : .

0.8 r

0.6

falselCost=c)

0.4

P(Buys?

6 B 10 12
Cost ¢

—
T’
b3
4=

Probit distribution uses integral of Gaussian:
®(x) =/_*N(0,1)(x)dx
P(Buys? =true | Cost=c) = ®((—c + p) /o)
Can view as hard threshold whose location is subject to noise
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Discrete variable

Sigmoid (or logit) distribution also used in neural networks:

1
1+ exp(—2=54)

P(Buys? =true | Cost=c) =

Sigmoid has similar shape to probit but much longer tails:
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Inference in belief networks

e Exact inference by enumeration

e Exact inference by variable elimination

e Approximate inference by stochastic simulation

e Approximate inference by Markov chain Monte Carlo (MCMC)
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